Skip to main content

Ceramide and Sphingosine-1-Phosphate Signaling in Embryonic Stem Cell Differentiation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 874))

Abstract

Recent studies show that bioactive lipids are important regulators for stem cell survival and differentiation. The sphingolipid ceramide and its derivative, sphingosine-1-phosphate (S1P), can act synergistically on embryonic stem (ES) cell differentiation. We show here simple methods to analyze sphingolipids in differentiating ES cells and to use ceramide and S1P analogs for the guided differentiation of mouse ES cells toward neuronal and glial lineage.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bieberich E, Silva J, Wang G, Krishnamurthy K, Condie BG (2004) Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. J Cell Biol 167:723–734

    Article  PubMed  CAS  Google Scholar 

  2. Yanai J, Doetchman T, Laufer N, Maslaton J, Mor-Yosef S, Safran A, Shani M, Sofer D (1995) Embryonic cultures but not embryos transplanted to the mouse’s brain grow rapidly without immunosuppression. Int J Neurosci 81:21–26

    Article  PubMed  CAS  Google Scholar 

  3. Wakitani S, Takaoka K, Hattori T, Miyazawa N, Iwanaga T, Takeda S, Watanabe TK, Tanigami A (2003) Embryonic stem cells injected into the mouse knee joint form teratomas and subsequently destroy the joint. Rheumatology (Oxford) 42:162–165

    Article  CAS  Google Scholar 

  4. Teramoto K, Hara Y, Kumashiro Y, Chinzei R, Tanaka Y, Shimizu-Saito K, Asahina K, Teraoka H, Arii S (2005) Teratoma formation and hepatocyte differentiation in mouse liver transplanted with mouse embryonic stem cell-derived embryoid bodies. Transplant Proc 37:285–286

    Article  PubMed  CAS  Google Scholar 

  5. Swijnenburg RJ, Tanaka M, Vogel H, Baker J, Kofidis T, Gunawan F, Lebl DR, Caffarelli AD, de Bruin JL, Fedoseyeva EV, Robbins RC (2005) Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation 112:I166–I172

    PubMed  Google Scholar 

  6. Sanchez-Pernaute R, Studer L, Ferrari D, Perrier A, Lee H, Vinuela A, Isacson O (2005) Long-term survival of dopamine neurons derived from parthenogenetic primate embryonic stem cells (cyno-1) after transplantation. Stem Cells 23:914–922

    Article  PubMed  Google Scholar 

  7. Kim D, Gu Y, Ishii M, Fujimiya M, Qi M, Nakamura N, Yoshikawa T, Sumi S, Inoue K (2003) In vivo functioning and transplantable mature pancreatic islet-like cell clusters differentiated from embryonic stem cell. Pancreas 27:e34–e41

    Article  PubMed  Google Scholar 

  8. Fujikawa T, Oh SH, Pi L, Hatch HM, Shupe T, Petersen BE (2005) Teratoma formation leads to failure of treatment for type I diabetes using embryonic stem cell-derived insulin-producing cells. Am J Pathol 166:1781–1791

    Article  PubMed  CAS  Google Scholar 

  9. Fong SP, Tsang KS, Chan AB, Lu G, Poon WS, Li K, Baum LW, Ng HK (2007) Trophism of neural progenitor cells to embryonic stem cells: neural induction and transplantation in a mouse ischemic stroke model. J Neurosci Res 85:1851–1862

    Article  PubMed  CAS  Google Scholar 

  10. Choi D, Oh HJ, Chang UJ, Koo SK, Jiang JX, Hwang SY, Lee JD, Yeoh GC, Shin HS, Lee JS, Oh B (2002) In vivo differentiation of mouse embryonic stem cells into hepatocytes. Cell Transplant 11:359–368

    PubMed  Google Scholar 

  11. Bielby RC, Boccaccini AR, Polak JM, Buttery LD (2004) In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Eng 10:1518–1525

    PubMed  CAS  Google Scholar 

  12. Arnhold S, Klein H, Semkova I, Addicks K, Schraermeyer U (2004) Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space. Invest Ophthalmol Vis Sci 45:4251–4255

    Article  PubMed  Google Scholar 

  13. Baker M (2009) Stem cells: fast and furious. Nature 458:962–965

    Article  PubMed  CAS  Google Scholar 

  14. Leor J, Gerecht S, Cohen S, Miller L, Holbova R, Ziskind A, Shachar M, Feinberg MS, Guetta E, Itskovitz-Eldor J (2007) Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart 93:1278–1284

    Article  PubMed  Google Scholar 

  15. Blum B, Benvenisty N (2008) The tumorigenicity of human embryonic stem cells. Adv Cancer Res 100:133–158

    Article  PubMed  Google Scholar 

  16. Lee AS, Tang C, Cao F, Xie X, van der Bogt K, Hwang A, Connolly AJ, Robbins RC, Wu JC (2009) Effects of cell number on teratoma formation by human embryonic stem cells. Cell Cycle 8:2608–2612

    Article  PubMed  CAS  Google Scholar 

  17. Fong CY, Gauthaman K, Bongso A (2010) Teratomas from pluripotent stem cells: a clinical hurdle. J Cell Biochem 111:769–781

    Article  PubMed  CAS  Google Scholar 

  18. Kuznetsov S, Cherman N, Gehron Robey P (2010) In vivo bone formation by progeny of human embryonic stem cells. Stem Cells Dev 20:269–287

    Article  PubMed  Google Scholar 

  19. Wang NK, Tosi J, Kasanuki JM, Chou CL, Kong J, Parmalee N, Wert KJ, Allikmets R, Lai CC, Chien CL, Nagasaki T, Lin CS, Tsang SH (2010) Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa. Transplantation 89:911–919

    Article  PubMed  Google Scholar 

  20. Bieberich E (2008) Smart drugs for smarter stem cells: making SENSe (sphingolipid-enhanced neural stem cells) of ceramide. Neurosignals 16:124–139

    Article  PubMed  CAS  Google Scholar 

  21. Bieberich E (2008) Ceramide signaling in cancer and stem cells. Future Lipidol 3:273–300

    Article  PubMed  CAS  Google Scholar 

  22. Bieberich E, Hu B, Silva J, MacKinnon S, Yu RK, Fillmore H, Broaddus WC, Ottenbrite RM (2002) Synthesis and characterization of novel ceramide analogs for induction of apoptosis in human cancer cells. Cancer Lett 181:55–64

    Article  PubMed  CAS  Google Scholar 

  23. Bieberich E, Kawaguchi T, Yu RK (2000) N-Acylated serinol is a novel ceramide mimic inducing apoptosis in neuroblastoma cells. J Biol Chem 275:177–181

    Article  PubMed  CAS  Google Scholar 

  24. Wang G, Krishnamurthy K, Umapathy NS, Verin AD, Bieberich E (2009) The carboxyl-terminal domain of atypical protein kinase Czeta binds to ceramide and regulates junction formation in epithelial cells. J Biol Chem 284:14469–14475

    Article  PubMed  CAS  Google Scholar 

  25. Wang G, Silva J, Krishnamurthy K, Tran E, Condie BG, Bieberich E (2005) Direct binding to ceramide activates protein kinase Czeta before the formation of a pro-apoptotic complex with PAR-4 in differentiating stem cells. J Biol Chem 280:26415–26424

    Article  PubMed  CAS  Google Scholar 

  26. Dutta D, Ray S, Home P, Larson M, Wolfe MW, Paul S (2011) Self renewal vs. lineage commitment of embryonic stem cells: protein kinase C signaling shifts the balance. Stem Cells 29(4):618–628 [epub ahead of print]

    Article  PubMed  CAS  Google Scholar 

  27. Bieberich E, MacKinnon S, Silva J, Noggle S, Condie BG (2003) Regulation of cell death in mitotic neural progenitor cells by asymmetric distribution of prostate apoptosis response 4 (PAR-4) and simultaneous elevation of endogenous ceramide. J Cell Biol 162:469–479

    Article  PubMed  CAS  Google Scholar 

  28. Bieberich E, MacKinnon S, Silva J, Yu RK (2001) Regulation of apoptosis during neuronal differentiation by ceramide and b-series complex gangliosides. J Biol Chem 276:44396–44404

    Article  PubMed  CAS  Google Scholar 

  29. Bieberich E (2010) There is more to a lipid than just being a Fat: sphingolipid-guided differentiation of oligodendroglial lineage from embryonic stem cells. Neurochem Res 36(9):1601–1611 [epub ahead of print]

    Article  PubMed  Google Scholar 

  30. Hancock CR, Wetherington JP, Lambert NA, Condie BG (2000) Neuronal differentiation of cryopreserved neural progenitor cells derived from mouse embryonic stem cells. Biochem Biophys Res Commun 271:418–421

    Article  PubMed  CAS  Google Scholar 

  31. Westmoreland JJ, Hancock CR, Condie BG (2001) Neuronal development of embryonic stem cells: a model of GABAergic neuron differentiation. Biochem Biophys Res Commun 284:674–680

    Article  PubMed  CAS  Google Scholar 

  32. Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 59:89–102

    Article  PubMed  CAS  Google Scholar 

  33. Roach L, McNelsh JD (2002) Methods for the isolation and maintenance of murine embryonic stem cells. In: Turksen K (ed) Methods in molecular biology, vol 183, Embryonic stem cells. Humana, New Jersey, pp 1–16

    Google Scholar 

  34. Salli U, Fox TE, Carkaci-Salli N, Sharma A, Robertson GP, Kester M, Vrana KE (2009) Propagation of undifferentiated human embryonic stem cells with nano-liposomal ceramide. Stem Cells Dev 18:55–65

    Article  PubMed  CAS  Google Scholar 

  35. Krishnamurthy K, Wang G, Silva J, Condie BG, Bieberich E (2007) Ceramide regulates atypical PKC{zeta}/{lambda}-mediated cell polarity in primitive ectoderm cells: a novel function of sphingolipids in morphogenesis. J Biol Chem 282:3379–3390

    Article  PubMed  CAS  Google Scholar 

  36. Krishnamurthy K, Dasgupta S, Bieberich E (2007) Development and characterization of a novel anti-ceramide antibody. J Lipid Res 48:968–975

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was in part supported by the NIH grants R01AG034389 and R01NS046835, a GRAVentureLab grant, and a March of Dimes grant 6-FY08-322.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erhard Bieberich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bieberich, E. (2012). Ceramide and Sphingosine-1-Phosphate Signaling in Embryonic Stem Cell Differentiation. In: Pébay, A., Turksen, K. (eds) Sphingosine-1-Phosphate. Methods in Molecular Biology, vol 874. Humana Press. https://doi.org/10.1007/978-1-61779-800-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-800-9_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-799-6

  • Online ISBN: 978-1-61779-800-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics