Skip to main content

Analysis of LINE-1 Expression in Human Pluripotent Cells

  • Protocol
  • First Online:
Human Embryonic Stem Cells Handbook

Part of the book series: Methods in Molecular Biology ((MIMB,volume 873))

Abstract

Half of the human genome is composed of repeated DNA, and some types are mobile within our genome (transposons and retrotransposons). Despite their abundance, only a small fraction of them are currently active in our genome (Long Interspersed Element-1 (LINE-1), Alu, and SVA elements). LINE-1 or L1 elements are a family of active non-LTR retrotransposons, the ongoing mobilization of which still impacts our genome. As selfish DNA elements, L1 activity is more prominent in early human development, where new insertions would be transmitted to the progeny. Here, we describe the conventional methods aimed to determine the expression level of LINE-1 elements in pluripotent human cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  CAS  Google Scholar 

  2. Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM et al (2010) LINE-1 retrotransposition activity in human genomes. Cell 141:1159–1170

    Article  PubMed  CAS  Google Scholar 

  3. Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH et al (2003) Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci USA 100:5280–5285

    Article  PubMed  CAS  Google Scholar 

  4. Scott AF, Schmeckpeper BJ, Abdelrazik M, Comey CT, O’Hara B et al (1987) Origin of the human L1 elements: proposed progenitor genes deduced from a consensus DNA sequence. Genomics 1:113–125

    Article  PubMed  CAS  Google Scholar 

  5. Martin SL, Bushman FD (2001) Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol Cell Biol 21:467–475

    Article  PubMed  CAS  Google Scholar 

  6. Martin SL, Cruceanu M, Branciforte D, Wai-Lun Li P, Kwok SC et al (2005) LINE-1 retrotransposition requires the nucleic acid chaperone activity of the ORF1 protein. J Mol Biol 348:549–561

    Article  PubMed  CAS  Google Scholar 

  7. Feng Q, Moran JV, Kazazian HH Jr, Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905–916

    Article  PubMed  CAS  Google Scholar 

  8. Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD et al (1996) High frequency retrotransposition in cultured mammalian cells. Cell 87:917–927

    Article  PubMed  CAS  Google Scholar 

  9. Wei W, Gilbert N, Ooi SL, Lawler JF, Ostertag EM et al (2001) Human L1 retrotransposition: cis preference versus trans complementation. Mol Cell Biol 21:1429–1439

    Article  PubMed  CAS  Google Scholar 

  10. Kulpa DA, Moran JV (2005) Ribonucleoprotein particle formation is necessary but not sufficient for LINE-1 retrotransposition. Hum Mol Genet 14:3237–3248

    Article  PubMed  CAS  Google Scholar 

  11. Kulpa DA, Moran JV (2006) Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat Struct Mol Biol 13:655–660

    Article  PubMed  CAS  Google Scholar 

  12. Cost GJ, Feng Q, Jacquier A, Boeke JD (2002) Human L1 element target-primed reverse transcription in vitro. EMBO J 21:5899–5910

    Article  PubMed  CAS  Google Scholar 

  13. Luan DD, Korman MH, Jakubczak JL, Eickbush TH (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595–605

    Article  PubMed  CAS  Google Scholar 

  14. Hulme AE, Kulpa DA, Garcia-Perez JL, Moran JV (2006) The impact of LINE-1 retrotransposition on the human genome. In: Lupski J, Stankiewicz P (eds) Genomic disorders: the genomic basis of disease. Humana, Totowa, NJ

    Google Scholar 

  15. Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632

    Article  PubMed  CAS  Google Scholar 

  16. Goodier JL, Kazazian HH (2008) Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135:23–35

    Article  PubMed  CAS  Google Scholar 

  17. Belancio VP, Hedges DJ, Deininger P (2008) Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res 18:343–358

    Article  PubMed  CAS  Google Scholar 

  18. Lupski JR (2010) Retrotransposition and structural variation in the human genome. Cell 141:1110–1112

    Article  PubMed  CAS  Google Scholar 

  19. Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y et al (2009) L1 retrotransposition in human neural progenitor cells. Nature 460:1127–1131

    Article  PubMed  CAS  Google Scholar 

  20. Huang CR, Scheneider AM, Lu Y, Niranjan T, Shen P et al (2010) Mobile interspersed repeats are major structural variants in the human genome. Cell 141:1171–1182

    Article  PubMed  CAS  Google Scholar 

  21. Iskow RC, McCabe MT, Mills RE, Torene S, Pittard WS et al (2010) Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141:1253–1261

    Article  PubMed  CAS  Google Scholar 

  22. Martin SL, Branciforte D (1993) Synchronous expression of LINE-1 RNA and protein in mouse embryonal carcinoma cells. Mol Cell Biol 13:5383–5392

    PubMed  CAS  Google Scholar 

  23. Ostertag EM, DeBerardinis RJ, Goodier JL, Zhang Y, Yang N et al (2002) A mouse model of human L1 retrotransposition. Nat Genet 32:655–660

    Article  PubMed  CAS  Google Scholar 

  24. Prak ET, Dodson AW, Farkash EA, Kazazian HH Jr (2003) Tracking an embryonic L1 retrotransposition event. Proc Natl Acad Sci USA 100:1832–1837

    Article  PubMed  CAS  Google Scholar 

  25. Muotri AR, Chu VT, Marchetto MC, Deng W, Moran JV et al (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435:903–910

    Article  PubMed  CAS  Google Scholar 

  26. Kano H, Godoy I, Courtney C, Vetter MR, Gerton GL et al (2009) L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes Dev 23:1303–1312

    Article  PubMed  CAS  Google Scholar 

  27. Garcia-Perez JL, Marchetto MC, Muotri AR, Coufal NG, Gage FH et al (2007) LINE-1 retrotransposition in human embryonic stem cells. Hum Mol Genet 16:1569–1577

    Article  PubMed  CAS  Google Scholar 

  28. Garcia-Perez JL, Morell M, Scheys JO, Kulpa DA, Morell S et al (2010) Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells. Nature 466:769–773

    Article  PubMed  CAS  Google Scholar 

  29. Wissing S, Munoz-Lopez M, Macia A, Yang Z, Montano M, Collins W, Garcia-Perez JL, Moran JV, and Greene WC “Reprogramming Somatic Cells into iPS Cells Reinstates LINE-1 Retroelement Mobility”. Hum Mol Genet. 2012 Jan 1;21(1):208–218.

    Google Scholar 

  30. Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340

    Article  PubMed  CAS  Google Scholar 

  31. Bestor TH (2003) Cytosine methylation mediates sexual conflict. Trends Genet 19:185–190

    Article  PubMed  CAS  Google Scholar 

  32. Bourc’his D, Bestor TH (2004) Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431:96–99

    Article  PubMed  Google Scholar 

  33. Smit AFA, Hubley R, Green P RepeatMasker, version: open-3.2.9. Unpublished data

    Google Scholar 

  34. Sassaman DM, Dombroski BA, Moran JV, Kimberland ML, Naas TP et al (1997) Many human L1 elements are capable of retrotransposition. Nat Genet 16:37–43

    Article  PubMed  CAS  Google Scholar 

  35. Montes R, Ligero G, Sanchez L, Catalina P, de la Cueva T et al (2009) Feeder-free maintenance of hESCs in mesenchymal stem cell-conditioned media: distinct requirements for TGF-beta and IGF-II. Cell Res 19:698–709

    Article  PubMed  CAS  Google Scholar 

  36. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  37. Boissinot S, Chevret P, Furano AV (2000) L1 (LINE-1) retrotransposon evolution and amplification in recent human history. Mol Biol Evol 17:915–928

    Article  PubMed  CAS  Google Scholar 

  38. Boissinot S, Furano AV (2005) The recent evolution of human L1 retrotransposons. Cytogenet Genome Res 110:402–406

    Article  PubMed  CAS  Google Scholar 

  39. Boissinot S, Roos C, Furano AV (2004) Different rates of LINE-1 (L1) retrotransposon amplification and evolution in New World monkeys. J Mol Evol 58:122–130

    Article  PubMed  CAS  Google Scholar 

  40. Bogerd HP, Wiegand HL, Hulme AE, Garcia-Perez JL, O’Shea KS et al (2006) Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. Proc Natl Acad Sci USA 103:8780–8785

    Article  PubMed  CAS  Google Scholar 

  41. Macia A, Munoz-Lopez M, Cortes JL, Hastings R, Morell S, Lucena-Aguilar G, Marchal JA, Badge RM, and Garcia-Perez JL (2011) Epigenetic control of retrotransposon expression in human embryonic stem cells. Mol Cell Biol 31(2):300–316

    Google Scholar 

  42. Doucet AJ, Hulme AE, Sahinovic E, Kulpa DA, Moldovan JB et al (2010) Characterization of LINE-1 ribonucleoprotein particles. PLoS Genet 6:e1001150

    Article  PubMed  Google Scholar 

  43. Martin SL (1991) Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells. Mol Cell Biol 11:4804–4807

    PubMed  CAS  Google Scholar 

  44. Goodier JL, Ostertag EM, Engleka KA, Seleme MC, Kazazian HH Jr (2004) A potential role for the nucleolus in L1 retrotransposition. Hum Mol Genet 13:1041–1048

    Article  PubMed  CAS  Google Scholar 

  45. Goodier JL, Zhang L, Vetter MR, Kazazian HH Jr (2007) LINE-1 ORF1 protein localizes in stress granules with other RNA-binding proteins, including components of RNA interference RNA-induced silencing complex. Mol Cell Biol 27:6469–6483

    Article  PubMed  CAS  Google Scholar 

  46. Skowronski J, Fanning TG, Singer MF (1988) Unit-length line-1 transcripts in human teratocarcinoma cells. Mol Cell Biol 8:1385–1397

    PubMed  CAS  Google Scholar 

  47. Hohjoh H, Singer MF (1996) Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. EMBO J 15:630–639

    PubMed  CAS  Google Scholar 

  48. Hohjoh H, Singer MF (1997) Sequence-specific single-strand RNA binding protein encoded by the human LINE-1 retrotransposon. EMBO J 16:6034–6043

    Article  PubMed  CAS  Google Scholar 

  49. Hohjoh H, Singer MF (1997) Ribonuclease and high salt sensitivity of the ribonucleoprotein complex formed by the human LINE-1 retrotransposon. J Mol Biol 271:7–12

    Article  PubMed  CAS  Google Scholar 

  50. Skene PJ, Illingworth RS, Webb S, Kerr AR, James KD et al (2010) Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state. Mol Cell 37:457–468

    Article  PubMed  CAS  Google Scholar 

  51. Ramos-Mejia V, Munoz-Lopez M, Garcia-Perez JL, Menendez P (2010) iPSC lines that do not silence the expression of the ectopic reprogramming factors may display enhanced propensity to genomic instability. Cell Res 20:1092–1095

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

M.M.-L. and M.G.-C. contributed equally to this chapter. We thank Gael Cristofari (CNRS, France) for the anti-L1.3-ORF1p antibody. J.L.G.-P. lab is supported by a Marie Curie IRG action (FP7-PEOPLE-2007-4-3-IRG), Instituto de Salud Carlos III/FEDER, Spain (EMER07/056, CP07/00065, and FIS/FEDER PI08171), and Junta de Andalucia, Spain (CICE/FEDER P09-CTS-4980 and PeS-FEDER PI-002). M.M.-L. and S.M are supported by CICE P09-CTS-4980 and CICE P08-CTS-3678 from Junta de Andalucia, Spain. We thank the valuable input from colleagues at our institution. We also thank the contribution of the laboratories of Fred H. Gage (Salk Institute, USA) and John V. Moran (Howard Hughes Medical Institute, University of Michigan, USA) for their work in many of the techniques included in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose L. Garcia-Perez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Muñoz-Lopez, M., Garcia-Cañadas, M., Macia, A., Morell, S., Garcia-Perez, J.L. (2012). Analysis of LINE-1 Expression in Human Pluripotent Cells. In: Turksen, K. (eds) Human Embryonic Stem Cells Handbook. Methods in Molecular Biology, vol 873. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-794-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-794-1_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-793-4

  • Online ISBN: 978-1-61779-794-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics