Skip to main content

Using eQTLs to Reconstruct Gene Regulatory Networks

  • Protocol
  • First Online:
Quantitative Trait Loci (QTL)

Part of the book series: Methods in Molecular Biology ((MIMB,volume 871))

Abstract

In recent years, a new type of experiment has emerged. It involves genetic crosses and simultaneous measurements of the genome-wide gene expression and genotype information of the offspring. In this chapter, I discuss how to reconstruct gene regulatory networks from this type of data. Subheading 1 provides an overview of the topic. In Subheading 2, I review previous methods of constructing gene networks from expression data alone and point out the difficulties of inferring causal relationships from observational studies. I also introduce the concept of Mendelian randomization of genotypes during a genetic cross. Based on this concept, several methods have been proposed that utilize the genetically randomized genotype information (expression quantitative trait loci information) to infer gene regulatory relationships. Subheading 3 describes the development and details of these methods. I also discuss the pros and cons of each. Subheading 4 addresses a major challenge of inferring gene regulation: how to adequately consider the existence of hidden variables, and points out that further research is still needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  2. Friedman N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian networks to analyze expression data. J Comput Biol 7(3–4):601–620

    Article  PubMed  CAS  Google Scholar 

  3. Spirtes P, Glymour C, Scheines R (2000) Constructing Bayesian network models of gene expression networks from microarray data. In: Proceedings of the Atlantic symposium on computational biology, genome information systems and technology. Durham, North Carolina

    Google Scholar 

  4. Pearl J (2000) Causality: models, reasoning, and inference. Cambridge University Press, Cambridge

    Google Scholar 

  5. Brem RB, Yvert G, Clinton R, Kruglyak L (2002) Genetic dissection of transcriptional regulation in budding yeast. Science 296:752–755

    Article  PubMed  CAS  Google Scholar 

  6. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N et al (2003) Genetics of gene expression surveyed in maize, mouse, and man. Nature 422:297–302

    Article  PubMed  CAS  Google Scholar 

  7. Schadt EE, Lamb J, Yang X, Zhu J, Edwards S et al (2005) An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37:710–717

    Article  PubMed  CAS  Google Scholar 

  8. Bing N, Hoeschele I (2005) Genetical genomics analysis of a yeast segregant population for transcription network inference. Genetics 170:533–542

    Article  PubMed  CAS  Google Scholar 

  9. Li R, Tsaih S-W, Shockley K, Stylianou IM, Wergedal J et al (2006) Structural model analysis of multiple quantitative traits. PLoS Genet 2:1046–1057

    CAS  Google Scholar 

  10. Greenland S (1990) Randomization, statistics, and causal inference. Epidemiology 1:421–429

    Article  PubMed  CAS  Google Scholar 

  11. Gray R, Wheatley K (1991) How to avoid bias when comparing bone marrow transplantation with chemotherapy. Bone Marrow Transplant 7(suppl 3):9–12

    PubMed  Google Scholar 

  12. Smith GD, Ebrahim S (2003) Mendelian randomization: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 32:1–22

    Article  Google Scholar 

  13. Mendel GJ (1950) Gregor mendel’s letters to Carl Nageli. Genetics 35:1–29

    PubMed  CAS  Google Scholar 

  14. Pearl J (1985) Bayesian networks: a model of self-activated memory for evidential reasoning. In: Proceedings of the 7th conference of the cognitive science society. Irvine, California, pp 329–334

    Google Scholar 

  15. Kulp D, Jagular M (2006) Causal inference of regulator-target pairs by gene mapping of expression phenotypes. BMC Genomics 7:125

    Article  PubMed  Google Scholar 

  16. Wright S (1923) The theory of path coefficients: a reply to Niles’s criticism. Genetics 8:239–255

    PubMed  CAS  Google Scholar 

  17. Chen LS, Emmert-Streib F, Storey JD (2007) Harnessing naturally randomized transcription to infer causal regulatory relationships among genes. Genome Biol 8:R219

    Article  PubMed  Google Scholar 

  18. Storey JD, Akey JM, Kruglyak L (2005) Multiple locus linkage analysis of genomewide expression in yeast. PLoS Biol 3:1380–1390

    Article  CAS  Google Scholar 

  19. Chaibub-Neto E, Ferrara CT, Attie AD, Yandell BS (2008) Inferring causal phenotype networks from segregating populations. Genetics 179:1089–1100

    Article  PubMed  Google Scholar 

  20. Richardson T, Spirtes P (2002) Ancestral graph Markov models. Ann Stat 30:962–1030

    Article  Google Scholar 

  21. Breitling R, Li Y, Tesson BM, Fu J, Wu C et al (2008) Genetical genomics: spotlight on QTL hotspots. PLoS Genet 4:e1000232

    Article  PubMed  Google Scholar 

  22. Hartemink A, Gifford D, Jaakkola T, Young R (2002) Combining location and expression data for principled discovery of genetic regulatory network models. In: Pacific symposium on biocomputing. Lihue, Hawaii, pp 437–449

    Google Scholar 

  23. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  PubMed  CAS  Google Scholar 

  24. Hartemink A, Gifford D, Jaakkola T, Young R (2001) Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks. In: Proceedings of the 6th Pacific symposium on biocomputing. Big island, Hawaii, pp 422–433

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin S. Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media

About this protocol

Cite this protocol

Chen, L.S. (2012). Using eQTLs to Reconstruct Gene Regulatory Networks. In: Rifkin, S. (eds) Quantitative Trait Loci (QTL). Methods in Molecular Biology, vol 871. Humana Press. https://doi.org/10.1007/978-1-61779-785-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-785-9_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-784-2

  • Online ISBN: 978-1-61779-785-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics