Skip to main content

Assessing Microvessels After Spinal Cord Injury

  • Protocol
  • First Online:
Animal Models of Acute Neurological Injuries II

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

This chapter focuses on the assessment of spinal cord microvessels which are lost at the injury epicenter within 24 h after spinal cord contusion or compression in adult rats and mice. The penumbral blood vessels undergo angiogenesis during the first and second week possibly contributing to recovery. Rescue of blood vessels results in better tissue preservation and functional outcomes. We describe various markers, intravenous labeling techniques, quantitative histological measurements, permeability assays, collection of purified microvessels, genetic mouse models, and endothelial cell culture methods to assess vascular status after spinal cord injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. del Zoppo GJ (2010) The neurovascular unit in the setting of stroke. J Intern Med 267:156–171

    Article  PubMed  Google Scholar 

  2. Carrico KM, Vaishnav RA, Hall ED (2009) Temporal and spatial dynamics of peroxynitrite-induced oxidative damage after spinal cord contusion injury. J Neurotrauma 26(8):1369–1378

    Article  PubMed  Google Scholar 

  3. Loy DN, Crawford CH, Darnall JB, Burke DA, Onifer SM, Whittemore SR (2002) Temporal progression of angiogenesis and basal lamina deposition after contusive spinal cord injury in the adult rat. J Comp Neurol 445:308–324

    Article  PubMed  Google Scholar 

  4. Casella GT, Bunge MB, Wood PM (2006) Endothelial cell loss is not a major cause of neuronal and glial cell death following contusion injury of the spinal cord. Exp Neurol 202:8–20

    Article  PubMed  Google Scholar 

  5. Benton RL, Maddie MA, Minnillo DR, Hagg T, Whittemore SR (2008) Griffonia simplicifolia isolectin B4 identifies a specific subpopulation of angiogenic blood vessels following contusive spinal cord injury in the adult mouse. J Comp Neurol 507:1031–1052

    Article  PubMed  Google Scholar 

  6. Noble LJ, Wrathall JR (1989) Distribution and time course of protein extravasation in the rat spinal cord after contusive injury. Brain Res 482:57–66

    Article  PubMed  CAS  Google Scholar 

  7. Whetstone WD, Hsu JY, Eisenberg M, Werb Z, Noble-Haeusslein LJ (2003) Blood-spinal cord barrier after spinal cord injury: relation to revascularization and wound healing. J Neurosci Res 74:227–239

    Article  PubMed  CAS  Google Scholar 

  8. Donnelly DJ, Popovich PG (2008) Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Exp Neurol 209:378–388

    Article  PubMed  CAS  Google Scholar 

  9. Norenberg MD, Smith J, Marcillo A (2004) The pathology of human spinal cord injury: defining the problems. J Neurotrauma 21:429–440

    Article  PubMed  Google Scholar 

  10. Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, Saenz AD, Pasquale-Styles M, Dietrich WD, Weaver LC (2006) The cellular inflammatory response in human spinal cords after injury. Brain 129:3249–3269

    Article  PubMed  Google Scholar 

  11. Bramlett HM, Dietrich WD (2007) Progressive damage after brain and spinal cord injury: pathomechanisms and treatment strategies. Prog Brain Res 161:125–141

    Article  PubMed  Google Scholar 

  12. Fehlings MG, Tator CH, Linden RD (1989) The effect of nimodipine and dextran on axonal function and blood flow following experimental spinal cord injury. J Neurosurg 71:403–416

    Article  PubMed  CAS  Google Scholar 

  13. Guha A, Tator CH, Smith CR, Piper I (1989) Improvement in post-traumatic spinal cord blood flow with a combination of a calcium channel blocker and a vasopressor. J Trauma 29:1440–1447

    Article  PubMed  CAS  Google Scholar 

  14. Hall ED, Wolf DL (1986) A pharmacological analysis of the pathophysiological mechanisms of posttraumatic spinal cord ischemia. J Neuro-surg 64:951–961

    Article  PubMed  CAS  Google Scholar 

  15. Hall ED (1988) Effects of the 21-aminosteroid U74006F on posttraumatic spinal cord ischemia in cats. J Neurosurg 68:462–465

    Article  PubMed  CAS  Google Scholar 

  16. Hall ED, McCall JM, Means ED (1994) Therapeutic potential of the lazaroids (21-amino­steroids) in acute central nervous system trauma, ischemia and subarachnoid hemorrhage. Adv Pharmacol 28:221–268

    Article  PubMed  CAS  Google Scholar 

  17. Noble LJ, Donovan F, Igarashi T, Goussev S, Werb Z (2002) Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events. J Neurosci 22:7526–7535

    PubMed  CAS  Google Scholar 

  18. Simard JM, Tsymbalyuk O, Ivanov A, Ivanova S, Bhatta S, Geng Z, Woo SK, Gerzanich V (2007) Endothelial sulfonylurea receptor 1-regulated NC Ca-ATP channels mediate progressive hemorrhagic necrosis following spinal cord injury. J Clin Invest 117:2105–2113

    Article  PubMed  CAS  Google Scholar 

  19. Gerzanich V, Woo SK, Vennekens R, Tsymbalyuk O, Ivanova S, Ivanov A, Geng Z, Chen Z, Nilius B, Flockerzi V, Freichel M, Simard JM (2009) De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury. Nat Med 15:185–191

    Article  PubMed  CAS  Google Scholar 

  20. Han S, Arnold SA, Sithu SD, Mahoney ET, Geralds JT, Tran P, Benton RL, Maddie MA, D’Souza SE, Whittemore SR, Hagg T (2010) Rescuing vasculature with intravenous angiopoietin-1 and alphavbeta3 integrin peptide is protective after spinal cord injury. Brain 133:1026–1042

    Article  PubMed  Google Scholar 

  21. Mahoney ET, Benton RL, Maddie MA, Whittemore SR, Hagg T (2009) ADAM8 is selectively up-regulated in endothelial cells and is associated with angiogenesis after spinal cord injury in adult mice. J Comp Neurol 512:243–255

    Article  PubMed  CAS  Google Scholar 

  22. Dray C, Rougon G, Debarbieux F (2009) Quantitative analysis by in vivo imaging of the dynamics of vascular and axonal networks in injured mouse spinal cord. Proc Natl Acad Sci U S A 106:9459–9464

    Article  PubMed  CAS  Google Scholar 

  23. Zhao H, Webb RH, Ortel B (2002) Review of noninvasive methods for skin blood flow imaging in microcirculation. J Clin Eng 27:40–47

    Google Scholar 

  24. McDonald DM, Choyke PL (2003) Imaging of angiogenesis: from microscope to clinic. Nat Med 9:713–725

    Article  PubMed  CAS  Google Scholar 

  25. Mostany R, Portera-Cailliau C (2008) A method for 2-photon imaging of blood flow in the neocortex through a cranial window. J Vis Exp 25:678

    Google Scholar 

  26. van Laar PJ, van der Grond J, Hendrikse J (2008) Brain perfusion territory imaging: methods and clinical applications of selective arterial spin-labeling MR imaging. Radiology 246:354–364

    Article  PubMed  Google Scholar 

  27. Wuestenfeld JC, Herold J, Niese U, Kappert U, Schmeisser A, Strasser RH, Braun-Dullaeus RC (2008) Indocyanine green angiography: a new method to quantify collateral flow in mice. J Vasc Surg 48:1315–1321

    Article  PubMed  Google Scholar 

  28. Vakoc BJ, Lanning RM, Tyrrell JA, Padera TP, Bartlett LA, Stylianopoulos T, Munn LL, Tearney GJ, Fukumura D, Jain RK, Bouma BE (2009) Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 15:1219–1223

    Article  PubMed  CAS  Google Scholar 

  29. Boas DA, Dunn AK (2010) Laser speckle contrast imaging in biomedical optics. J Biomed Opt 15:011109

    Article  PubMed  Google Scholar 

  30. Fukumura D, Duda DG, Munn LL, Jain RK (2010) Tumor microvasculature and microenvironment: novel insights through intravital imaging in pre-clinical models. Microcirculation 17:206–225

    Article  PubMed  CAS  Google Scholar 

  31. Saper CB (2005) An open letter to our readers on the use of antibodies. J Comp Neurol 493:477–478

    Article  PubMed  Google Scholar 

  32. Li Y, Song Y, Zhao L, Gaidosh G, Laties AM, Wen R (2008) Direct labeling and visualization of blood vessels with lipophilic carbocyanine dye DiI. Nat Protoc 3:1703–1708

    Article  PubMed  CAS  Google Scholar 

  33. Balding P, Gold ER (1975) Observations on the reaction of en(a-)cells with sophora japonica haemagglutinin. Z Immunitatsforsch Exp Klin Immunol 145:156–165

    PubMed  CAS  Google Scholar 

  34. Brabec RK, Peters BP, Bernstein IA, Gray RH, Goldstein IJ (1980) Differential lectin binding to cellular membranes in the epidermis of the newborn rat. Proc Natl Acad Sci U S A 77:477–479

    Article  PubMed  CAS  Google Scholar 

  35. Franz S, Frey B, Sheriff A, Gaipl US, Beer A, Voll RE, Kalden JR, Herrmann M (2006) Lectins detect changes of the glycosylation status of plasma membrane constituents during late apoptosis. Cytometry A 69:230–239

    PubMed  Google Scholar 

  36. Noble LJ, Mautes AE, Hall JJ (1996) Characterization of the microvascular glycocalyx in normal and injured spinal cord in the rat. J Comp Neurol 376:542–556

    Article  PubMed  CAS  Google Scholar 

  37. Thurston G, Baluk P, Hirata A, McDonald DM (1996) Permeability-related changes revealed at endothelial cell borders in inflamed venules by lectin binding. Am J Physiol 271:H2547–H2562

    PubMed  CAS  Google Scholar 

  38. Jilani SM, Murphy TJ, Thai SN, Eichmann A, Alva JA, Iruela-Arispe ML (2003) Selective binding of lectins to embryonic chicken vasculature. J Histochem Cytochem 51:597–604

    Article  PubMed  CAS  Google Scholar 

  39. Peters BP, Goldstein IJ (1979) The use of fluorescein-conjugated Bandeiraea simplicifolia B4-isolectin as a histochemical reagent for the detection of alpha-d-galactopyranosyl groups. Their occurrence in basement membranes. Exp Cell Res 120:321–334

    Article  PubMed  CAS  Google Scholar 

  40. Laitinen L (1987) Griffonia simplicifolia lectins bind specifically to endothelial cells and some epithelial cells in mouse tissues. Histochem J 19:225–234

    Article  PubMed  CAS  Google Scholar 

  41. Hayes CE, Goldstein IJ (1974) An alpha-D-galactosyl-binding lectin from Bandeiraea simplicifolia seeds. Isolation by affinity chromatography and characterization. J Biol Chem 249:1904–1914

    PubMed  CAS  Google Scholar 

  42. Niethammer AG, Xiang R, Becker JC, Wodrich H, Pertl U, Karsten G, Eliceiri BP, Reisfeld RA (2002) A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth. Nat Med 8:1369–1375

    Article  PubMed  CAS  Google Scholar 

  43. Benton RL, Maddie MA, Gruenthal MJ, Hagg T, Whittemore SR (2009) Neutralizing endogenous VEGF following traumatic spinal cord injury modulates microvascular plasticity but not tissue sparing or functional recovery. Curr Neurovasc Res 6:124–131

    Article  PubMed  CAS  Google Scholar 

  44. Benton RL, Maddie MA, Worth CA, Mahoney ET,Hagg T, Whittemore SR (2008) Transcrip-tomic screening of microvascular endothelial cells implicates novel molecular regulators of vascular dysfunction after spinal cord injury. J Cereb Blood Flow Metab 28:1771–1785

    Article  PubMed  CAS  Google Scholar 

  45. Benton RL, Maddie MA, Dincman TA, Hagg T,Whittemore SR (2009) Transcriptional activation of endothelial cells by TGFbeta coincides with acute microvascular plasticity following focal spinal cord ischaemia/reperfusion injury. ASN Neuro 1:e00015

    Article  PubMed  Google Scholar 

  46. Koyanagi I, Tator CH, Lea PJ (1993) Three-dimensional analysis of the vascular system in the rat spinal cord with scanning electron microscopy of vascular corrosion casts. Part 2: acute spinal cord injury. Neurosurgery 33:285–291

    Article  PubMed  CAS  Google Scholar 

  47. Bjornsson CS, Lin G, Al-Kofahi Y, Narayanas-wamy A, Smith KL, Shain W, Roysam B (2008) Associative image analysis: a method for automated quantification of 3D multi-parameter images of brain tissue. J Neurosci Methods 170:165–178

    Article  PubMed  Google Scholar 

  48. Guha A, Tator CH, Rochon J (1989) Spinal cord blood flow and systemic blood pressure after experimental spinal cord injury in rats. Stroke 20:372–377

    Article  PubMed  CAS  Google Scholar 

  49. Davalos D, Lee JK, Smith WB, Brinkman B, Ellisman MH, Zheng B, Akassoglou K (2008) Stable in vivo imaging of densely populated glia, axons and blood vessels in the mouse spinal cord using two-photon microscopy. J Neurosci Methods 169:1–7

    Article  PubMed  Google Scholar 

  50. Noble LJ, Maxwell DS (1983) Blood-spinal cord barrier response to transection. Exp Neurol 79:188–199

    Article  PubMed  CAS  Google Scholar 

  51. Benton RL, Whittemore SR (2003) VEGF165 therapy exacerbates secondary damage following spinal cord injury. Neurochem Res 28:1693–1703

    Article  PubMed  CAS  Google Scholar 

  52. Qu ZX, Xu J, Perot PL Jr, Hogan EL (1991) A sensitive fluorometric method for measurement of vascular permeability in spinal cord injury. J Neurotrauma 8:149–156

    Article  PubMed  CAS  Google Scholar 

  53. Smith R, Brown EH, Shum-Siu A, Whelan A, Burke D, Benton RL, Magnuson DS (2009) Swim training initiated acutely after spinal cord injury is ineffective and induces extravasation in and around the epicenter. J Neurotrauma 26(7):1017–1027

    Article  PubMed  Google Scholar 

  54. Wu Z, Hofman FM, Zlokovic BV (2003) A simple method for isolation and characterization of mouse brain microvascular endothelial cells. J Neurosci Methods 130:53–63

    Article  PubMed  CAS  Google Scholar 

  55. Hemmings SJ, Storey KB (1999) Brain gamma-glutamyltranspeptidase: characteristics, development and thyroid hormone dependency of the enzyme in isolated microvessels and neuronal/glial cell plasma membranes. Mol Cell Biochem 202:119–130

    Article  PubMed  CAS  Google Scholar 

  56. Diglio CA, Grammas P, Giacomelli F, Wiener J (1982) Primary culture of rat cerebral microvascular endothelial cells. Isolation, growth, and characterization. Lab Invest 46:554–563

    PubMed  CAS  Google Scholar 

  57. Joo F, Dux E, Szucs A (1982) Microvessels from the spinal cord: isolation procedure and characterization of the fraction. J Neurochem 39:263–266

    Article  PubMed  CAS  Google Scholar 

  58. Ge S, Pachter JS (2006) Isolation and culture of microvascular endothelial cells from murine spinal cord. J Neuroimmunol 177:209–214

    Article  PubMed  CAS  Google Scholar 

  59. Yousif S, Marie-Claire C, Roux F, Scherrmann JM, Decleves X (2007) Expression of drug transporters at the blood-brain barrier using an optimized isolated rat brain microvessel strategy. Brain Res 1134:1–11

    Article  PubMed  CAS  Google Scholar 

  60. Enerson BE, Drewes LR (2006) The rat blood-brain barrier transcriptome. J Cereb Blood Flow Metab 26:959–973

    Article  PubMed  CAS  Google Scholar 

  61. Shusta EV, Boado RJ, Mathern GW, Pardridge WM (2002) Vascular genomics of the human brain. J Cereb Blood Flow Metab 22:245–252

    Article  PubMed  CAS  Google Scholar 

  62. Schlaeger TM, Bartunkova S, Lawitts JA, Teichmann G, Risau W, Deutsch U, Sato TN (1997) Uniform vascular-endothelial-cell-specific gene expression in both embryonic and adult transgenic mice. Proc Natl Acad Sci U S A 94:3058–3063

    Article  PubMed  CAS  Google Scholar 

  63. Motoike T, Loughna S, Perens E, Roman BL, Liao W, Chau TC, Richardson CD, Kawate T, Kuno J, Weinstein BM, Stainier DY, Sato TN (2000) Universal GFP reporter for the study of vascular development. Genesis 28:75–81

    Article  PubMed  CAS  Google Scholar 

  64. Ohtsuki S, Kamiya N, Hori S, Terasaki T (2005) Vascular endothelium-selective gene induction by Tie2 promoter/enhancer in the brain and retina of a transgenic rat. Pharm Res 22:852–857

    Article  PubMed  CAS  Google Scholar 

  65. De PM, Venneri MA, Galli R, Sergi SL, Politi LS, Sampaolesi M, Naldini L (2005) Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8:211–226

    Article  Google Scholar 

  66. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118:149–161

    Article  PubMed  CAS  Google Scholar 

  67. Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4

    Article  PubMed  CAS  Google Scholar 

  68. Alva JA, Zovein AC, Monvoisin A, Murphy T, Salazar A, Harvey NL, Carmeliet P, Iruela-Arispe ML (2006) VE-cadherin-Cre-recombinase transgenic mouse: a tool for lineage analysis and gene deletion in endothelial cells. Dev Dyn 235:759–767

    Article  PubMed  CAS  Google Scholar 

  69. Monvoisin A, Alva JA, Hofmann JJ, Zovein AC, Lane TF, Iruela-Arispe ML (2006) VE-cadherin-CreERT2 transgenic mouse: a model for ­inducible recombination in the endothelium. Dev Dyn 235:3413–3422

    Article  PubMed  CAS  Google Scholar 

  70. Bicknell R (ed) (1996) Endothelial cell culture. Cambridge University Press, New York

    Google Scholar 

  71. Hoying JB, Boswell CA, Williams SK (1996) Angiogenic potential of microvessel fragments established in three-dimensional collagen gels. In Vitro Cell Dev Biol Anim 32:409–419

    Article  PubMed  CAS  Google Scholar 

  72. Shepherd BR, Chen HY, Smith CM, Gruionu G, Williams SK, Hoying JB (2004) Rapid perfusion and network remodeling in a microvascular construct after implantation. Arterioscler Thromb Vasc Biol 24:898–904

    Article  PubMed  CAS  Google Scholar 

  73. Nakashima S, Arnold SA, Mahoney ET, Sithu SD, Zhang YP, D’Souza SE, Shields CB, Hagg T (2008) Small-molecule protein tyrosine phosphatase inhibition as a neuroprotective treatment after spinal cord injury in adult rats. J Neurosci 28:7293–7303

    Article  PubMed  CAS  Google Scholar 

  74. Staton CA, Reed MW, Brown NJ (2009) A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Pathol 90:195–221

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Kentucky Spinal Cord and Head Injury Research Trust and National Institutes of Health (NS045734 and RR015576) and by Norton Healthcare and the Commonwealth of Kentucky Challenge for Excellence (SRW, TH). We thank the many people who over the years have contributed to the development of these techniques, including Sheila Arnold, Darlene Burke, Charles Crawford, Jessica Darnall, Toros Dincman, Justin Geralds, Mark Gruenthal, Shu Han, Russ Howard, David Loy, Melissa Maddie, Ed Mahoney, Scott Myers, Christine Nunn, Rollie Reid, and Sheher Sun.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theo Hagg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hagg, T., Benton, R.L., Fassbender, J.M., Whittemore, S.R. (2012). Assessing Microvessels After Spinal Cord Injury. In: Chen, J., Xu, XM., Xu, Z., Zhang, J. (eds) Animal Models of Acute Neurological Injuries II. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-61779-782-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-782-8_41

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-781-1

  • Online ISBN: 978-1-61779-782-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics