Skip to main content

Retrograde Axonal Tract Tracing

  • Protocol
  • First Online:
Animal Models of Acute Neurological Injuries II

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 2207 Accesses

Abstract

Deficits in sensory and motor function after spinal cord injury are attributable primarily to the interruption of long sensory and motor axonal tracts in the spinal cord. Different spinal cord tracts display different vulnerability to the injury, capability to regenerate, and contribution to functional recovery. Due to the complexity of the central nervous system (CNS) tracts, it is worthwhile to exploit how to exquisitely label them within the spinal cord and examine their connections to the brain or periphery. Retrograde axonal tract tracing technologies are powerful tools for identifying axonal connections in the normal or injured spinal cord. With appropriate injury models and retrograde tracing techniques to transport tracers from axon terminal to the soma, neuronal origin of targeted axons can be determined. After tracing, tissue is collected following appropriate survival time. To detect tracers inside the neuronal soma, nucleus, and corresponding dendrites, various labeling techniques are used which include direct fluorescence, immunohistochemistry, immunofluorescence, and autoradiography. When combined with anterograde tracing techniques, retrograde tracers may be used to establish anatomical reorganizations of neural networks. When combined with immunohistochemistry, retrograde tracing may be used for neurochemical characterization of specific neuronal pathways or specific cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dahlstrom A (1971) Axoplasmic transport (with particular respect to adrenergic neurons). Philos Trans R Soc Lond B Biol Sci 261:325–358

    Article  PubMed  CAS  Google Scholar 

  2. Jeffrey PL, Austin L (1973) Axoplasmic transport. Prog Neurobiol 2:207–255

    Article  PubMed  CAS  Google Scholar 

  3. Nauta WJ, Gygax PA (1954) Silver impregnation of degenerating axons in the central nervous system: a modified technique. Stain Technol 29:91–93

    PubMed  CAS  Google Scholar 

  4. Kristensson K, Olsson Y (1971) Retrograde axonal transport of protein. Brain Res 29: 363–365

    Article  PubMed  CAS  Google Scholar 

  5. Akintunde A, Buxton DF (1992) Quadruple labeling of brain-stem neurons: a multiple retrograde fluorescent tracer study of axonal collateralization. J Neurosci Methods 45:15–22

    Article  PubMed  CAS  Google Scholar 

  6. LaVail JH, LaVail MM (1972) Retrograde axonal transport in the central nervous system. Science 176:1416–1417

    Article  PubMed  CAS  Google Scholar 

  7. Kuypers HG, Ugolini G (1990) Viruses as transneuronal tracers. Trends Neurosci 13:71–75

    Article  PubMed  CAS  Google Scholar 

  8. Marshel JH, Mori T, Nielsen KJ, Callaway EM (2010) Targeting single neuronal networks for gene expression and cell labeling in vivo. Neuron 67(4):562–574

    Article  PubMed  CAS  Google Scholar 

  9. Giloh H, Sedat JW (1982) Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science 217:1252–1255

    Article  PubMed  CAS  Google Scholar 

  10. Deller T, Naumann T, Frotscher M (2000) Retrograde and anterograde tracing combined with transmitter identification and electron microscopy. J Neurosci Methods 103:117–126

    Article  PubMed  CAS  Google Scholar 

  11. Mason A, Larkman A, Eldridge JL (1988) A method for intracellular injection of horseradish peroxidase by pressure. J Neurosci Methods 22:181–187

    Article  PubMed  CAS  Google Scholar 

  12. Xu XM, Martin GF (1989) Developmental plasticity of the rubrospinal tract in the North American opossum. J Comp Neurol 279:368–381

    Article  PubMed  CAS  Google Scholar 

  13. Imura K, Rockland KS (2007) Giant neurons in the macaque pulvinar: a distinct relay subpopulation. Front Neuroanat 1(2):1–8

    Google Scholar 

  14. Xu XM, Martin GF (1989) The response of rubrospinal neurons to axotomy in the adult opossum, Didelphis virginiana. Exp Neurol 108: 46–54

    Article  Google Scholar 

  15. Xu XM, Martin GF (1992) The response of rubrospinal neurons to axotomy at different stages of development in the North American opossum. J Neurotrauma 9:93–105

    Article  PubMed  CAS  Google Scholar 

  16. Xu XM, Chen A, Guenard V, Kleitman N, Bunge MB (1997) Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord. J Neurocytol 26:1–16

    Article  PubMed  CAS  Google Scholar 

  17. Iannotti C, Li H, Yan P, Lu X, Wirthlin L, Xu XM (2003) Glial cell line-derived neurotrophic factor-enriched bridging transplants promote propriospinal axonal regeneration and enhance myelination after spinal cord injury. Exp Neurol 183(2):379–393

    Article  PubMed  CAS  Google Scholar 

  18. Schmued LC, Fallon JH (1986) Fluoro-Gold: a new fluorescent retrograde axonal tracer with numerous unique properties. Brain Res 377: 147–154

    Article  PubMed  CAS  Google Scholar 

  19. Wessendorf MW (1991) Fluoro-Gold: composition, and mechanism of uptake. Brain Res 553:135–148

    Article  PubMed  CAS  Google Scholar 

  20. Reiner A, Veenman CL, Medina L, Jiao Y, Del Mar N, Honig MG (2000) Pathway tracing using biotinylated dextran amines. J Neurosci Methods 103(1):23–37

    Article  PubMed  CAS  Google Scholar 

  21. Brandt HM, Apkarian AV (1992) Biotin-dextran: a sensitive anterograde tracer for neuroanatomic studies in rat and monkey. J Neurosci Methods 45:35–40

    Article  PubMed  CAS  Google Scholar 

  22. Rajakumar N, Elisevich K, Flumerfelt BA (1993) Biotinylated dextran: a versatile anterograde and retrograde neuronal tracer. Brain Res 607:47–53

    Article  PubMed  CAS  Google Scholar 

  23. Angelucci A, Clasca F, Sur M (1996) Anterograde axonal tracing with the subunit B of cholera toxin: a highly sensitive immunohistochemical protocol for revealing fine axonal morphology in adult and neonatal brains. J Neurosci Methods 65:101–112

    Article  PubMed  CAS  Google Scholar 

  24. Luppi PH, Sakai K, Salvert D, Fort P, Jouvet M (1987) Peptidergic hypothalamic afferents to the cat nucleus raphe pallidus as revealed by a double immunostaining technique using unconjugated cholera toxin as a retrograde tracer. Brain Res 402:339–345

    Article  PubMed  CAS  Google Scholar 

  25. Luppi PH, Fort P, Jouvet M (1990) Iontophoretic application of unconjugated cholera toxin B subunit (CTb) combined with immunohistochemistry of neurochemical substances: a method for transmitter identification of retrogradely labeled neurons. Brain Res 534: 209–224

    Article  PubMed  CAS  Google Scholar 

  26. Ericson H, Blomqvist A (1988) Tracing of neuronal connections with cholera toxin subunit B: light and electron microscopic immunohistochemistry using monoclonal antibodies. J Neurosci Methods 24:225–235

    Article  PubMed  CAS  Google Scholar 

  27. Conte WL, Kamishina H, Reep RL (2009) Multiple neuroanatomical tract-tracing using fluorescent Alexa Fluor conjugates of cholera toxin subunit B in rats. Nat Protoc 4:1157–1166

    Article  PubMed  CAS  Google Scholar 

  28. Holets VR, Hokfelt T, Ude J, Eckert M, Penzlin H, Verhofstad AAJ, Visser TJ (1987) A comparative study of the immunohistochemical localization of a presumptive proctolin-like peptide, thyrotropin-releasing hormone and 5-hydroxytryptamine in the rat central nervous system. Brain Res 408:141–153

    Article  PubMed  CAS  Google Scholar 

  29. Liu NK, Zhang YP, Han S, Pei J, Xu LY, Lu PH, Shields CB, Xu XM (2007) Annexin A1 reduces inflammatory reaction and tissue damage through inhibition of phospholipase A2 activation in adult rats following spinal cord injury. J Neuropathol Exp Neurol 66:932–943

    Article  PubMed  CAS  Google Scholar 

  30. Xu XM, Martin GF (1991) Evidence for new growth and regeneration of cut axons in developmental plasticity of the rubrospinal tract in the North American opossum. J Comp Neurol 313:103–112

    Article  PubMed  CAS  Google Scholar 

  31. Conte WL, Kamishina H, Reep RL (2009) Multiple neuroanatomical tract-tracing using fluorescent Alexa Fluor conjugates of cholera toxin subunit B in rats. Nat Protoc 4:1157–1166

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ming Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Deng, L., Wang, X., Walker, C.L., Ruan, Y., Xu, XM. (2012). Retrograde Axonal Tract Tracing. In: Chen, J., Xu, XM., Xu, Z., Zhang, J. (eds) Animal Models of Acute Neurological Injuries II. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-61779-782-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-782-8_38

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-781-1

  • Online ISBN: 978-1-61779-782-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics