Skip to main content

Electrophysiological Approaches in Traumatic Brain Injury

  • Protocol
  • First Online:

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

This chapter briefly reviews electrophysiological applications in experimental models of traumatic brain injury (TBI). The review was restricted to studies where rodents were used in one of the more common in vivo models of TBI and where electrophysiological recordings were then conducted either in vivo or in brain slices. This summary discussion is intended for researchers new to the topic of electrophysiology in TBI, who may be interested in knowing which specific recording techniques have been adapted in the various models. The chapter concludes with a protocol for recording compound action potentials in the corpus callosum of rats which have previously undergone fluid percussion TBI.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Cohen AS, Pfister BJ, Schwarzbach E, Grady MS, Goforth PB, Satin LS (2007) Injury-induced alterations in CNS electrophysiology. Prog Brain Res 161:143–169

    Article  PubMed  CAS  Google Scholar 

  2. Gennarelli TA (1994) Animate models of human head injury. J Neurotrauma 11:357–368

    Article  PubMed  CAS  Google Scholar 

  3. Povlishock JT, Hayes RL, Michel ME, McIntosh TK (1994) Workshop on animal models of traumatic brain injury. J Neurotrauma 11: 723–732

    Article  PubMed  CAS  Google Scholar 

  4. Morales DM, Marklund N, Lebold D, Thompson HJ, Pitakanen A, Maxwell WL, Longhi L, Laurer H, Maegele M, Neugebauer E, Graham DI, Stocchetti N, McIntosh TK (2005) Experimental models of traumatic brain injury: do we really need to build a better mouse trap? Neuroscience 136:971–989

    Article  PubMed  CAS  Google Scholar 

  5. Lyeth BG, Jenkins LW, Hamm RJ, Dixon CE, Phillips LL, Clifton GL, Young HF, Hayes RL (1990) Prolonged memory impairment in the absence of hippocampal cell death following traumatic brain injury in the rat. Brain Res 526:249–258

    Article  PubMed  CAS  Google Scholar 

  6. Miyazaki S, Katayama Y, Lyeth BG, Jenkins LW, DeWitt DS, Goldberg SJ, Newton PG, Hayes RL (1992) Enduring suppression of hippocampal long-term potentiation following traumatic brain injury in rat. Brain Res 585:335–339

    Article  PubMed  CAS  Google Scholar 

  7. Reeves TM, Lyeth BG, Povlishock JT (1995) Long-term potentiation deficits and excitability changes following traumatic brain injury. Exp Brain Res 106:248–256

    Article  PubMed  CAS  Google Scholar 

  8. Reeves TM, Zhu J, Povlishock JT, Phillips LL (1997) The effect of combined fluid percussion and entorhinal cortical lesions on long-term potentiation. Neuroscience 77:431–444

    Article  PubMed  CAS  Google Scholar 

  9. Wagner AK, Sokoloski JE, Ren D, Chen X, Khan AS, Zafonte RD, Michael AC, Dixon CE (2005) Controlled cortical impact injury affects dopaminergic transmission in the rat striatum. J Neurochem 95:457–465

    Article  PubMed  CAS  Google Scholar 

  10. Witgen BM, Lifshitz J, Smith ML, Schwarzbach E, Liang S-L, Grady MS, Cohen AS (2005) Regional hippocampal alteration associated with cognitive deficit following experimental brain injury: a systems, network and cellular evaluation. Neuroscience 133:1–15

    Article  PubMed  CAS  Google Scholar 

  11. Hunt RF, Scheff SW, Smith BN (2009) Posttraumatic epilepsy after controlled cortical impact injury in mice. Exp Neurol 215:243–252

    Article  PubMed  Google Scholar 

  12. Hunt RF, Scheff SW, Smith BN (2010) Regionally localized recurrent excitation in the dentate gyrus of a cortical contusion model of posttraumatic epilepsy. J Neurophysiol 103:1490–1500

    Article  PubMed  Google Scholar 

  13. Reeves TM, Phillips LL, Povlishock JT (2005) Myelinated and unmyelinated axons of the corpus callosum differ in vulnerability and functional recovery following traumatic brain injury. Exp Neurol 196:126–139

    Article  PubMed  Google Scholar 

  14. D’Ambrosio R, Fairbanks JP, Fender JS, Born DE, Doyle D, Miller JW (2004) Posttraumatic epilepsy following fluid percussion injury in the rat. Brain 127:304–314

    Article  PubMed  Google Scholar 

  15. D’Ambrosio R, Fender JS, Fairbanks JP, Simon EA, Born DE, Doyle DL, Miller JW (2005) Progression from frontal–parietal to mesial–temporal epilepsy after fluid percussion injury in the rat. Brain 128:174–188

    Article  PubMed  Google Scholar 

  16. Lowenstein DH, Thomas MJ, Smith DH, McIntosh TK (1992) Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus. J Neurosci 12:4846–4853

    PubMed  CAS  Google Scholar 

  17. Reeves TM, Lyeth BG, Hamm RJ, Phillips LL, Povlishock JT (1997) The effects of traumatic brain injury on inhibition in the hippocampus and dentate gyrus. Brain Res 757:119–132

    Article  PubMed  CAS  Google Scholar 

  18. Rogatsky GG, Sonn J, Kamenir Y, Zarchin N, Mayevsky A (2003) Relationship between intracranial pressure and cortical spreading depression following fluid percussion brain injury in rats. J Neurotrauma 20:1315–1325

    Article  PubMed  CAS  Google Scholar 

  19. Sanders MJ, Dietrich WD, Green EJ (2001) Behavioral, electrophysiological, and histopathological consequences of mild fluid-percussion injury in the rat. Brain Res 904:141–144

    Article  PubMed  CAS  Google Scholar 

  20. Sakowitz OW, Unterberg AW, Stover JF (2002) Neuronal activity determined by quantitative EEG and cortical microdialysis is increased following controlled cortical impact injury in rats. Acta Neurochir Suppl 81:221–223

    PubMed  CAS  Google Scholar 

  21. Stover JF, Sakowitz OW, Unterberg AW (2004) Neuronal activity and cortical perfusion determined by quantitative EEG analysis and laser Doppler flowmetry are uncoupled in brain injured rats. Acta Neurochir Suppl 89:81–85

    Article  PubMed  CAS  Google Scholar 

  22. Ucar T, Ozkaya G, Demir N, Gurer I, Akyuz M, Onal MZ (2005) The effects of environmental light–dark changes on experimental mild traumatic brain injury. Acta Neurol Scand 112: 163–172

    Article  PubMed  CAS  Google Scholar 

  23. Bonislawski DP, Schwarzbach EP, Cohen AS (2007) Brain injury impairs dentate gyrus inhibitory efficacy. Neurobiol Dis 25:163–169

    Article  PubMed  CAS  Google Scholar 

  24. Park E, Liu E, Shek M, Park A, Baker AJ (2007) Heavy neurofilament accumulation and alpha-spectrin degradation accompany cerebellar white matter functional deficits following forebrain fluid percussion injury. Exp Neurol 204:49–57

    Article  PubMed  CAS  Google Scholar 

  25. Reeves TM, Kao CQ, Phillips LL, Bullock MR, Povlishock JT (2000) Presynaptic excitability changes following traumatic brain injury in the rat. J Neurosci Res 60:370–379

    Article  PubMed  CAS  Google Scholar 

  26. Sanders MJ, Sick TJ, Perez-Pinzon MA, Dietrich WD, Green EJ (2000) Chronic failure in the maintenance of long-term potentiation following fluid percussion in the rat. Brain Res 861:69–76

    Article  PubMed  CAS  Google Scholar 

  27. Santhakumar V, Ratzliff ADH, Jeng J, Toth Z, Soltesz I (2001) Long-term hyperexcitability in the hippocampus after experimental head trauma. Ann Neurol 50:708–717

    Article  PubMed  CAS  Google Scholar 

  28. Sick TJ, Pqrez-Pinzn MA, Feng ZZ (1998) Impaired expression of long-term potentiation in hippocampal slices 4 and 48 h following mild fluid-percussion brain injury in vivo. Brain Res 785:287–292

    Article  PubMed  CAS  Google Scholar 

  29. Tran LD, Lifshitz J, Witgen BM, Schwarzbach E, Cohen AS, Grady MS (2006) Response of the contralateral hippocampus to lateral fluid percussion brain injury. J Neurotrauma 23: 1330–1342

    Article  PubMed  Google Scholar 

  30. Ai J, Liu E, Wang J, Chen Y, Yu J, Baker AJ (2007) Calpain inhibitor MDL-28170 reduces the functional and structural deterioration of corpus callosum following fluid percussion injury. J Neurotrauma 24:960–978

    Article  PubMed  Google Scholar 

  31. Baker AJ, Phan N, Moulton RJ, Fehlings MG, Yucel Y, Zhao M, Liu E, Tian GF (2002) Attenuation of the electrophysiological function of the corpus callosum after fluid percussion injury in the rat. J Neurotrauma 19:587–599

    Article  PubMed  CAS  Google Scholar 

  32. Colley BS, Phillips LL, Reeves TM (2010) The effects of cyclosporin-A on axonal conduction deficits following traumatic brain injury in adult rats. Exp Neurol 224:241–251

    Google Scholar 

  33. D’Ambrosio R, Maris DO, Grady MS, Winn HR, Janigro D (1999) Impaired K+ homeostasis and altered electrophysiological properties of post-traumatic hippocampal glia. J Neurosci 19:8152–8162

    PubMed  Google Scholar 

  34. Reeves TM, Phillips LL, Lee NN, Povlishock JT (2007) Preferential neuroprotective effect of tacrolimus (FK506) on unmyelinated axons following traumatic brain injury. Brain Res 1154:225–236

    Article  PubMed  CAS  Google Scholar 

  35. Schultke E, Kamencic H, Zhao M, Tian G-F, Baker AJ, Griebel RW, Juurlink BHJ (2005) Neuroprotection following fluid percussion brain trauma: a pilot study using quercetin. J Neuro-trauma 22:1475–1484

    Article  PubMed  Google Scholar 

  36. Albensi BC, Sullivan PG, Thompson MB, Scheff SW, Mattson MP (2000) Cyclosporin ameliorates traumatic brain-injury-induced alterations of hippocampal synaptic plasticity. Exp Neurol 162:385–389

    Article  PubMed  CAS  Google Scholar 

  37. Ai J, Baker AJ (2002) Presynaptic hyperexcitability at cerebellar synapses in traumatic injury rat. Neurosci Lett 332:155–158

    Article  PubMed  CAS  Google Scholar 

  38. Golarai G, Greenwood AC, Feeney DM, Connor JA (2001) Physiological and structural evidence for hippocampal involvement in persistent seizure susceptibility after traumatic brain injury. J Neurosci 21: 8523–8537

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by NIH research grants NS-057758 (TMR), and by a Virginia Commonwealth Neurotrauma Initiative Award 07-302F (TMR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Reeves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Reeves, T.M., Colley, B.S. (2012). Electrophysiological Approaches in Traumatic Brain Injury. In: Chen, J., Xu, XM., Xu, Z., Zhang, J. (eds) Animal Models of Acute Neurological Injuries II. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-61779-782-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-782-8_30

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-781-1

  • Online ISBN: 978-1-61779-782-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics