Skip to main content

Assessment of Neurogenesis and White Matter Regeneration

  • Protocol
  • First Online:
  • 1681 Accesses

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Persistent neurogenesis occurs in discrete regions of the brain through neonatal to adult period, including the subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) (J Comp Neurol 124:319–335, 1969) and the subventricular zone of the lateral ventricle (J Comp Neurol 137:433–458, 1969). After Eriksson et al. showed that the human hippocampus retains an ability to generate neurons throughout life (Nat Med 4:1313–1317, 1998), it is now expected that neurogenesis has a potential to compensate for and recover neural functions that were destroyed by central nervous system disorders. In fact, since Liu et al. (J Neurosci 18:7768–7778, 1998) first showed that ischemia stimulates neurogenesis in the SGZ of the DG using gerbil forebrain transient ischemia model, the ability of neurogenesis and neuronal repair in the ischemic brain has been reported not only in adult ischemia models (Nat Med 8:963–970, 2002; Ann Neurol 52:802–813, 2002; Cell 110:429–441, 2002; J Clin Invest 114:330–338, 2004), but also in neonatal hypoxia–ischemia (NHI) models (Neurobiol Dis 16:585–595, 2004; Brain Res 1038:41–49, 2005; Neurol Res 28:461–468, 2006). Neurogenesis can be divided into three stages: (1) neural stem/progenitor cells proliferation, (2) neural stem/progenitor cells migration, and (3) differentiation to mature neurons, astrocytes, and oligodendrocytes (OLs) (Science 287:1433–1438, 2000). In ischemic brain, the period of increasing neural stem/progenitor cells’ proliferation and migration is very limited, so it is very important to choose the adequate period to investigate the stimulation of neurogenesis under postischemic condition (Neurol Res 28:461–468, 2006; Brain Res 902:288–293, 2001; J Cereb Blood Flow Metab 22:411–419, 2002; J Cereb Blood Flow Metab 23:331–341, 2003). OLs’ proliferation (oligodendrogenesis) is quite different from neuronal and glial cell proliferation because early oligodendrocyte progenitor cells (OPCs), which can proliferate under normal and pathogenic conditions, exist not only in white matter, but also in gray matter (J Neurosci Res 69:826–836, 2002). In the developing brain, OLs can be divided into four stages during its maturation: (1) early OPCs, (2) late OPCs, (3) immature OLs, and (4) mature OLs (Trends Cell Biol 3:191–197, 1993; J Neurosci 22:455–463, 2002). A lot of late OPCs in the developing brain, including neonatal brain, are very vulnerable to hypoxia or ischemia (J Neurosci 22:455–463, 2002). Therefore, the investigation of how early OPCs increase and reproduce myelin sheath after lack of late OPCs post NHI (Stroke 41:1032–1037, 2010) becomes significant. This chapter introduces a brief history of assessment of neurogenesis and white matter regeneration in models of NHI, as well as the required materials and tools for performing the assessment using methods, such as immunohistochemistry and immunofluorescence.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Altman J, Das GD (1969) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335

    Article  Google Scholar 

  2. Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. J Comp Neurol 137:433–458

    Article  PubMed  CAS  Google Scholar 

  3. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn A, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  PubMed  CAS  Google Scholar 

  4. Liu J, Solway K, Messing RO, Sharp FR (1998) Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J Neurosci 18:7768–7778

    PubMed  CAS  Google Scholar 

  5. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8:963–970

    Article  PubMed  CAS  Google Scholar 

  6. Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM (2002) Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52:802–813

    Article  PubMed  Google Scholar 

  7. Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N et al (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110:429–441

    Article  PubMed  CAS  Google Scholar 

  8. Taguchi A, Soma T, Tanaka H, Kanda T, Nishimura H, Yoshikawa H, Tsukamoto Y, Iso H, Fujimori Y, Stern DM, Naritomi H, Matsuyama T (2004) Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest 114:330–338

    PubMed  CAS  Google Scholar 

  9. Plane JM, Liu R, Wang TW, Silverstein FS, Parent JM (2004) Neonatal hypoxic–ischemic injury increases forebrain subventricular zone neurogenesis in the mouse. Neurobiol Dis 16:585–595

    Article  PubMed  CAS  Google Scholar 

  10. Hayashi T, Iwai M, Ikeda T, Jin G, Deguchi K, Nagotani S, Zhang H, Sehara Y, Nagano I, Shoji M, Ikenoue T, Abe K (2005) Neural precursor cells division and migration in neonatal rat brain after ischemic/hypoxic injury. Brain Res 1038:41–49

    Article  PubMed  CAS  Google Scholar 

  11. Iwai M, Ikeda T, Hayashi T, Sato K, Nagata T, Nagano I, Shoji M, Ikenoue T, Abe K (2006) Temporal profile of neural stem cell proliferation in the subventricular zone after ischemia/hypoxia in the neonatal rat brain. Neurol Res 28:461–468

    Article  PubMed  Google Scholar 

  12. Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  PubMed  CAS  Google Scholar 

  13. Iwai M, Hayashi T, Zhang WR, Sato K, Manabe Y, Abe K (2001) Induction of highly polysialylated neural cell adhesion molecule (PSA-NCAM) in postischemic gerbil hippocampus mainly dissociated with neural stem cell proliferation. Brain Res 902:288–293

    Article  PubMed  CAS  Google Scholar 

  14. Iwai M, Sato K, Omori N, Nagano I, Manabe Y, Shoji M, Abe K (2002) Three steps of neural stem cells development in gerbil dentate gyrus after transient ischemia. J Cereb Blood Flow Metab 22:411–419

    Article  PubMed  CAS  Google Scholar 

  15. Iwai M, Sato K, Kamada H, Omori N, Nagano I, Shoji M, Abe K (2003) Temporal profile of stem cell division, migration, and differentiation from subventricular zone to olfactory bulb after transient forebrain ischemia in gerbils. J Cereb Blood Flow Metab 23:331–341

    Article  PubMed  Google Scholar 

  16. Watanabe M, Toyama Y, Nishiyama A (2002) Differentiation of proliferated NG-2 positive glial progenitor cells in a remyelinating lesion. J Neurosci Res 69:826–836

    Article  PubMed  CAS  Google Scholar 

  17. Pfeiffer SE, Warrington AE, Bansal R (1993) The oligodendrocyte and its many cellular processes. Trends Cell Biol 3:191–197

    Article  PubMed  CAS  Google Scholar 

  18. Back SA, Han BH, Luo NL, Chricton CA, Xanthoudakis S, Tam J, Arvin KL, Holtzman DM (2002) Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J Neurosci 22:455–463

    PubMed  CAS  Google Scholar 

  19. Iwai M, Stetlar RA, Xing J, Hu X, Gao Y, Zhang W, Chen J, Cao G (2010) Enhanced oligodendrogenesis and recovery of neurological function by erythropoietin after neonatal hypoxic/ischemic brain injury. Stroke 41:1032–1037

    Article  PubMed  CAS  Google Scholar 

  20. Ikeda T, Iwai M, Hayashi T, Nagano I, Shogi M, Ikenoue T, Abe K (2005) Limited differentiation to neurons and astroglia from neural stem cells in the cortex and striatum after ischemia/hypoxia in the neonatal rat brain. Am J Obstet Gynecol 193:849–856

    Article  PubMed  CAS  Google Scholar 

  21. Iwai M, Cao G, Yin W, Stetler RA, Liu J, Chen J (2007) Erythropoietin promotes neuronal replacement through revascularization and neurogenesis after neonatal hypoxia/ischemia in rats. Stroke 38:2795–2803

    Article  PubMed  CAS  Google Scholar 

  22. Zaidi AU, Bessert DA, Ong JE, Xu H, Barks JD, Silverstein FS, Skoff RP (2004) New oligodendrocytes are generated after neonatal hypoxic-ischemic brain injury in rodents. Glia 46:380–390

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masanori Iwai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Iwai, M., Tajiri, H., Matsumoto, S., Mitsubuchi, H., Endo, F. (2012). Assessment of Neurogenesis and White Matter Regeneration. In: Chen, J., Xu, XM., Xu, Z., Zhang, J. (eds) Animal Models of Acute Neurological Injuries II. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-61779-782-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-782-8_24

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-781-1

  • Online ISBN: 978-1-61779-782-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics