Advertisement

Analyzing Single DNA Molecules by Nanopore Translocation

  • Lorenz J. Steinbock
  • Ulrich F. KeyserEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 870)

Abstract

Small holes in membranes or nanocapillaries can be employed to detect single molecules in solution. In fact, the resistive-pulse technique based on nanopores allows for determination of length, charge, and folding state of deoxyribonucleic acid (DNA). Here, we describe the experimental procedures necessary for measuring single DNA molecules in nanocapillaries. We also discuss the measures for data analysis and how to determine that only single molecule events are observed.

Key words

Nanopore DNA translocation Biopolymers Polymer transport Single molecule sensors Resistive-pulse technique Nanocapillary 

Notes

Acknowledgment

We would like to thank Cees Dekker, Nynke, Dekker, Serge Lemay, and Derek Stein for their help and discussions about solid-state nanopores. Gunter Stober helped with developing the measurement program. We thank Oliver Otto, Catalin Chimerel, and Joanne Gornall for providing technical assistance and discussions. Financial support of the Emmy Noether program of the DFG and the Deutsche Telekom Stiftung (Ph.D. grant for L.J.S.) is gratefully acknowledged.

References

  1. 1.
    Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145CrossRefGoogle Scholar
  2. 2.
    Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X, Jovanovich SB, Krstic PS, Lindsay S, Ling XS, Mastrangelo CH, Meller A, Oliver JS, Pershin YV, Ramsey JM, Riehn R, Soni GV, Tabard-Cossa V, Wanunu M, Wiggin M, Schloss JA (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153CrossRefGoogle Scholar
  3. 3.
    Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 2:209–215CrossRefGoogle Scholar
  4. 4.
    Huppert JL (2008) Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes. Chem Soc Rev 37:1375–1384CrossRefGoogle Scholar
  5. 5.
    Bezrukov SM (2000) Ion channels as molecular coulter counters to probe metabolite transport. J Membr Biol 174:1–13CrossRefGoogle Scholar
  6. 6.
    DeBlois RW, Wesley RK (1977) Sizes and concentrations of several type C oncornaviruses and bacteriophage T2 by the resistive-pulse technique. J Virol 23:227–233Google Scholar
  7. 7.
    Bayley H, Martin CR (2000) Resistive-pulse sensing—from microbes to molecules. Chem Rev 100:2575–2594CrossRefGoogle Scholar
  8. 8.
    Smeets RMM, Keyser UF, Krapf D, Wu MY, Dekker NH, Dekker C (2006) Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett 6:89–95CrossRefGoogle Scholar
  9. 9.
    Li J, Gershow M, Stein D, Brandin E, Golovchenko JA (2003) DNA molecules and configurations in a solid-state nanopore microscope. Nat Mater 2:611–615CrossRefGoogle Scholar
  10. 10.
    Storm A, Storm C, Chen J, Zandbergen H, Joanny J, Dekker C (2005) Fast DNA translocation through a solid-state nanopore. Nano Lett 5:1193–1197CrossRefGoogle Scholar
  11. 11.
    Steinbock LJ, Otto O, Chimerel C, Gornall JL, Keyser UF (2010) Detecting DNA folding with nanocapillaries. Nano Lett 10:2493CrossRefGoogle Scholar
  12. 12.
    Steinbock LJ, Otto O, Skarstam DR, Jahn S, Chimerel C, Gornall JL, Keyser UF (2010) Probing DNA with micro- and nanocapillaries and optical tweezers. J Phys Condens Matter 22:454113CrossRefGoogle Scholar
  13. 13.
    Stober G, Steinbock LJ, Keyser UF (2009) Modeling of colloidal transport in capillaries. J Appl Phys 105:084702CrossRefGoogle Scholar
  14. 14.
    Steinbock LJ, Stober G, Keyser UF (2009) Sensing DNA-coatings of microparticles using micropipettes. Biosens Bioelectron 24:2423–2427CrossRefGoogle Scholar
  15. 15.
    Siwy ZS (2006) Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv Funct Mater 16:735–746CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Cavendish LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations