Skip to main content

Analyzing Single DNA Molecules by Nanopore Translocation

  • Protocol
  • First Online:
Book cover Nanopore-Based Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 870))

Abstract

Small holes in membranes or nanocapillaries can be employed to detect single molecules in solution. In fact, the resistive-pulse technique based on nanopores allows for determination of length, charge, and folding state of deoxyribonucleic acid (DNA). Here, we describe the experimental procedures necessary for measuring single DNA molecules in nanocapillaries. We also discuss the measures for data analysis and how to determine that only single molecule events are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  CAS  Google Scholar 

  2. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X, Jovanovich SB, Krstic PS, Lindsay S, Ling XS, Mastrangelo CH, Meller A, Oliver JS, Pershin YV, Ramsey JM, Riehn R, Soni GV, Tabard-Cossa V, Wanunu M, Wiggin M, Schloss JA (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153

    Article  CAS  Google Scholar 

  3. Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 2:209–215

    Article  CAS  Google Scholar 

  4. Huppert JL (2008) Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes. Chem Soc Rev 37:1375–1384

    Article  CAS  Google Scholar 

  5. Bezrukov SM (2000) Ion channels as molecular coulter counters to probe metabolite transport. J Membr Biol 174:1–13

    Article  CAS  Google Scholar 

  6. DeBlois RW, Wesley RK (1977) Sizes and concentrations of several type C oncornaviruses and bacteriophage T2 by the resistive-pulse technique. J Virol 23:227–233

    CAS  Google Scholar 

  7. Bayley H, Martin CR (2000) Resistive-pulse sensing—from microbes to molecules. Chem Rev 100:2575–2594

    Article  CAS  Google Scholar 

  8. Smeets RMM, Keyser UF, Krapf D, Wu MY, Dekker NH, Dekker C (2006) Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett 6:89–95

    Article  CAS  Google Scholar 

  9. Li J, Gershow M, Stein D, Brandin E, Golovchenko JA (2003) DNA molecules and configurations in a solid-state nanopore microscope. Nat Mater 2:611–615

    Article  CAS  Google Scholar 

  10. Storm A, Storm C, Chen J, Zandbergen H, Joanny J, Dekker C (2005) Fast DNA translocation through a solid-state nanopore. Nano Lett 5:1193–1197

    Article  CAS  Google Scholar 

  11. Steinbock LJ, Otto O, Chimerel C, Gornall JL, Keyser UF (2010) Detecting DNA folding with nanocapillaries. Nano Lett 10:2493

    Article  CAS  Google Scholar 

  12. Steinbock LJ, Otto O, Skarstam DR, Jahn S, Chimerel C, Gornall JL, Keyser UF (2010) Probing DNA with micro- and nanocapillaries and optical tweezers. J Phys Condens Matter 22:454113

    Article  CAS  Google Scholar 

  13. Stober G, Steinbock LJ, Keyser UF (2009) Modeling of colloidal transport in capillaries. J Appl Phys 105:084702

    Article  Google Scholar 

  14. Steinbock LJ, Stober G, Keyser UF (2009) Sensing DNA-coatings of microparticles using micropipettes. Biosens Bioelectron 24:2423–2427

    Article  CAS  Google Scholar 

  15. Siwy ZS (2006) Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv Funct Mater 16:735–746

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank Cees Dekker, Nynke, Dekker, Serge Lemay, and Derek Stein for their help and discussions about solid-state nanopores. Gunter Stober helped with developing the measurement program. We thank Oliver Otto, Catalin Chimerel, and Joanne Gornall for providing technical assistance and discussions. Financial support of the Emmy Noether program of the DFG and the Deutsche Telekom Stiftung (Ph.D. grant for L.J.S.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich F. Keyser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Steinbock, L.J., Keyser, U.F. (2012). Analyzing Single DNA Molecules by Nanopore Translocation. In: Gracheva, M. (eds) Nanopore-Based Technology. Methods in Molecular Biology, vol 870. Humana Press. https://doi.org/10.1007/978-1-61779-773-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-773-6_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-772-9

  • Online ISBN: 978-1-61779-773-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics