Advertisement

DNA Sequencing by Nanopore-Induced Photon Emission

  • Alon Singer
  • Ben McNally
  • Ruby Dela Torre
  • Amit MellerEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 870)

Abstract

Nanopore-based DNA analysis is an extremely attractive area of research due to the simplicity of the method, and the ability to not only probe individual molecules, but also to detect very small amounts of genomic material. Here, we describe the materials and methods of a novel, nanopore-based, single-molecule DNA sequencing system that utilizes optical detection. We convert target DNA according to a binary code, which is recognized by molecular beacons with two types of fluorophores. Solid-state nanopores are then used to sequentially strip off the beacons, leading to a series of photon bursts that can be detected with a custom-made microscope. We do not use any enzymes in the readout stage; thus, our system is not limited by the highly variable processivity, lifetime, and inaccuracy of individual enzymes that can hinder throughput and reliability. Furthermore, because our system uses purely optical readout, we can take advantage of high-end, wide-field imaging devices to record from multiple nanopores simultaneously. This allows an extremely straightforward parallelization of our system to nanopore arrays.

Key words

Solid-state nanopore Nanopore array Circular DNA Conversion DNA sequencing 

Notes

Acknowledgments

We acknowledge financial support from NIH awards HG-004128 and HG-005871, and support from Harvard University’s Center for Nanoscale Systems.

References

  1. 1.
    Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 5910:133–138CrossRefGoogle Scholar
  2. 2.
    Fuller CW, Middendorf LR, Benner SA et al (2009) The challenges of sequencing by synthesis. Nat Biotechnol 11:1013–1023CrossRefGoogle Scholar
  3. 3.
    Harris TD, Buzby PR, Babcock H et al (2008) Single-molecule DNA sequencing of a viral genome. Science 5872:106–109CrossRefGoogle Scholar
  4. 4.
    Shendure J, Mitra RD, Varma C et al (2004) Advanced sequencing technologies: methods and goals. Nat Rev Genet 5:335–344CrossRefGoogle Scholar
  5. 5.
    Wanunu M, Sutin J, Meller A (2009) DNA profiling using solid-state nanopores: detection of DNA-binding molecules. Nano Lett 10: 3498–3502CrossRefGoogle Scholar
  6. 6.
    Deamer DW, Branton D (2002) Characterization of nucleic acids by nanopore analysis. Acc Chem Res 10:817–825CrossRefGoogle Scholar
  7. 7.
    Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 4:209–215CrossRefGoogle Scholar
  8. 8.
    Healy K (2007) Nanopore-based single-molecule DNA analysis. Nanomedicine 4:459–481CrossRefGoogle Scholar
  9. 9.
    Li J, Stein D, McMullan C et al (2001) Ion-beam sculpting at nanometre length scales. Nature 6843:166–169CrossRefGoogle Scholar
  10. 10.
    Liu H, He J, Tang J et al (2010) Translocation of single-stranded DNA Through single-walled carbon nanotubes. Science 5961:64–67CrossRefGoogle Scholar
  11. 11.
    Singer A, Wanunu M, Morrison W et al (2010) Nanopore based sequence specific detection of duplex DNA for genomic profiling. Nano Lett 2:738–742CrossRefGoogle Scholar
  12. 12.
    Wanunu M, Morrison W, Rabin Y et al (2010) Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient. Nat Nanotechnol 2:160–165CrossRefGoogle Scholar
  13. 13.
    Wanunu M, Sutin J, McNally B et al (2008) DNA translocation governed by interactions with solid-state nanopores. Biophys J 10: 4716–4725CrossRefGoogle Scholar
  14. 14.
    Chansin GAT, Mulero R, Hong J et al (2007) Single-molecule spectroscopy using nanoporous membranes. Nano Lett 9:2901–2906CrossRefGoogle Scholar
  15. 15.
    Chen Z, Jiang YB, Dunphy DR et al (2010) DNA translocation through an array of kinked nanopores. Nat Mater 8:667–675CrossRefGoogle Scholar
  16. 16.
    Mussi V, Fanzio P, Repetto L et al (2009) Solid state nanopores for gene expression profiling. Superlattice Microst 1–2:59–63CrossRefGoogle Scholar
  17. 17.
    Prabhu AS, Jubery TZN, Freedman KJ et al (2010) Chemically modified solid state nanopores for high throughput nanoparticle separation. J Phys Condens Matter 22(45):454107CrossRefGoogle Scholar
  18. 18.
    Akeson M, Branton D, Kasianowicz JJ et al (1999) Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys J 6:3227–3233CrossRefGoogle Scholar
  19. 19.
    Kasianowicz JJ, Brandin E, Branton D et al (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 24:13770–13773CrossRefGoogle Scholar
  20. 20.
    Meller A (2003) Dynamics of polynucleotide transport through nanometre-scale pores. J Phys Condens Matter 17:R581–R607CrossRefGoogle Scholar
  21. 21.
    Meller A, Nivon L, Branton D (2001) Voltage-driven DNA translocations through a nanopore. Phys Rev Lett 15:3435–3438CrossRefGoogle Scholar
  22. 22.
    Branton D, Deamer DW, Marziali A et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 10:1146–1153CrossRefGoogle Scholar
  23. 23.
    Clarke J, Wu HC, Jayasinghe L et al (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265–270CrossRefGoogle Scholar
  24. 24.
    Derrington IM, Butler TZ, Collins MD et al (2010) Nanopore DNA sequencing with MspA. Proc Natl Acad Sci USA 37: 16060–16065CrossRefGoogle Scholar
  25. 25.
    Vercoutere W, Akeson M (2002) Biosensors for DNA sequence detection. Curr Opin Chem Biol 6:816–822CrossRefGoogle Scholar
  26. 26.
    Soni GV, Singer A, Yu Z et al (2010) Synchronous optical and electrical detection of biomolecules traversing through solid-state nanopores. Rev Sci Instrum 1: 014301–014307CrossRefGoogle Scholar
  27. 27.
    McNally B, Singer A, Yu Z et al (2010) Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. Nano Lett 6:2237–2244CrossRefGoogle Scholar
  28. 28.
    Lo CJ, Aref T, Bezryadin A (2006) Fabrication of symmetric sub-5 nm nanopores using focused ion and electron beams. Nanotechnology 13: 3264–3267CrossRefGoogle Scholar
  29. 29.
    Mitsui T, Stein D, Kim YR et al (2006) Nanoscale volcanoes: accretion of matter at ion-sculpted nanopores. Phys Rev Lett 96(3):036102CrossRefGoogle Scholar
  30. 30.
    Schiedt B, Auvray L, Bacri L et al (2010) Direct FIB fabrication and integration of “single nanopore devices” for the manipulation of macromolecules. Microelectron Eng 5–8:1300–1303CrossRefGoogle Scholar
  31. 31.
    Kim MJ, Wanunu M, Bell DC et al (2006) Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis. Adv Mater 18(23):3149–3153CrossRefGoogle Scholar
  32. 32.
    Storm AJ, Chen JH, Ling XS et al (2003) Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater 8:537–540CrossRefGoogle Scholar
  33. 33.
    Kim MJ, McNally B, Murata K et al (2007) Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope. Nanotechnology 18(20):205302CrossRefGoogle Scholar
  34. 34.
    Chen P, Mitsui T, Farmer DB et al (2004) Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Lett 7:1333–1337CrossRefGoogle Scholar
  35. 35.
    Jakschik S, Schroeder U, Hecht T et al (2003) Physical characterization of thin ALD-Al2O3 films. Appl Surf Sci 1–4:352–359CrossRefGoogle Scholar
  36. 36.
    Venkatesan BM, Dorvel B, Yemenicioglu S et al (2009) Highly sensitive, mechanically ­stable nanopore sensors for DNA analysis. Adv Mater 21(27):2771CrossRefGoogle Scholar
  37. 37.
    Tong HD, Jansen HV, Gadgil VJ et al (2004) Silicon nitride nanosieve membrane. Nano Lett 2:283–287CrossRefGoogle Scholar
  38. 38.
    Axelrod D (1981) Cell-substrate contacts illuminated by total internal-reflection fluorescence. J Cell Biol 1:141–145CrossRefGoogle Scholar
  39. 39.
    Wanunu M, Meller A (2008) Single molecule analysis of nucleic acids and DNA-protein interactions using nanopores. In: Selvin P, Ha T (eds) Laboratory manual on single molecules. Cold Spring Harbor, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Alon Singer
    • 1
  • Ben McNally
    • 1
  • Ruby Dela Torre
    • 1
  • Amit Meller
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringBoston UniversityBostonUSA

Personalised recommendations