Skip to main content

Polymer Translocation Through an Electrically Tunable Nanopore in a Multilayered Semiconductor Membrane

  • Protocol
  • First Online:
Nanopore-Based Technology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 870))

Abstract

We have developed a two-level computational model that enables us to calculate electrostatic fields created by a semiconductor membrane submerged in electrolytic solution and investigate the effects of these fields on the dynamics of a polymer translocating through a nanopore in the membrane. In order to calculate the electrostatic potentials and the ionic concentrations in a solid-state nanopore, we have self-consistently solved Poisson equation within the semiclassical approximation for charge carrier statistics in the membrane and electrolyte. The electrostatic potentials obtained from these simulations are then used in conjunction with Langevin (Brownian) dynamics to model polymer translocation through the nanopore. In this work, we consider single-stranded DNA (ssDNA) translocation through semiconductor membranes consisting of heavily doped p- and n-layers of silicon forming a pn-junction which is capable of creating strong electric fields. We show that the membrane electric field controls dynamics of a biomolecule inside the channel, to either momentarily trap it, slow it down, or allow it to translocate at will.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kasianowicz J, Robertson J, Chan E, Stanford V (2008) Nanoscopic porous sensors. Annu Rev Anal Chem (Palo Alto Calif) 1:737–766

    Article  CAS  Google Scholar 

  2. URL: http://www.genome.gov/12513210

  3. Branton D, Deamer D, Marziali A, Bayley H, Benner S, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153

    Article  CAS  Google Scholar 

  4. Kasianowicz J, Brandin E, Branton D, Deamer D (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 93:13770–13773

    Article  CAS  Google Scholar 

  5. Fologea D, Uplinger J, Thomas B, McNabb D, Li J (2005) Slowing DNA translocation in a solid-state nanopore. Nano Lett 5:1734–1737

    Article  CAS  Google Scholar 

  6. Dimitrov V, Aksimentiev A, Schulten K, Heng J, Sorsch T, Mansfield W, Miner J, Watson GP, Cirelli R, Klemens F, Bower J, Ferry E, Taylor A, Kornblit A, Dorvel B, Zhao Q, Timp G (2006) Exploring the prospects for a nanometer-scale gene chip. IEDM Tech Digest 169–173

    Google Scholar 

  7. Akeson M, Branton D, Kasianowicz J, Brandin E, Deamer D (1999) Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophys J 77:3227–3233

    Article  CAS  Google Scholar 

  8. Kang X, Gu L, Cheley S, Bayley H (2005) Single protein pores containing molecular adapters at high temperatures. Angew Chem Int Ed Engl 44:1495–1499

    Article  CAS  Google Scholar 

  9. Clarke J, Wu H-C, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4:265–270

    Article  CAS  Google Scholar 

  10. Li J, Gershow M, Stein D, Brandin E, Golovchenko J (2003) DNA molecules and configurations in a solid-state nanopore microscope. Nat Mater 2:611–615

    Article  CAS  Google Scholar 

  11. Fologea D, Gershow M, Ledden B, McNabb D, Golovchenko J, Li J (2005) Detecting single stranded DNA with a solid state nanopore. Nano Lett 5:1905–1909

    Article  CAS  Google Scholar 

  12. Storm A, Chen J, Ling X, Zandbergen H, Dekker C (2008) Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater 2:537–540

    Article  Google Scholar 

  13. Gracheva ME, Xiong A, Aksimentiev A, Schulten K, Timp G, Leburton J-P (2006) Simulation of the electric response of DNA translocation through a semiconductor nanopore-capacitor. Nanotechnology 17:622–633

    Article  CAS  Google Scholar 

  14. Gracheva ME, Leburton J-P (2007) Electrolytic charge inversion at the liquid-solid interface in a nanopore in a doped semiconductor membrane. Nanotechnology 18:145704–145710

    Article  Google Scholar 

  15. Gracheva ME, Vidal J, Leburton J-P (2007) p-n semiconductor membrane for electrically tunable ion current rectification and filtering. Nano Lett 7:1717–1722

    Article  CAS  Google Scholar 

  16. Chun K-Y, Mafe S, Ramirez P, Stroeve P (2006) Protein transport through gold-coated, charged nanopores: effects of applied voltage. Chem Phys Lett 418:561–564

    Article  CAS  Google Scholar 

  17. Karnik R, Castelino K, Majumdar A (2006) Field-effect control of protein transport in a nanofluidic transistor circuit. Appl Phys Lett 88:1–3

    Article  Google Scholar 

  18. Meller A, Nivon L, Brandin E, Golovchenko J, Branton D (2000) Rapid nanopore discrimination between single polynucleotide molecules. Proc Natl Acad Sci USA 97:1079–1084

    Article  CAS  Google Scholar 

  19. Deamer D, Akeson M (2000) Nanopores and nucleic acids: prospects for ultrarapid sequencing. Trends Biotechnol 18:147–151

    Article  CAS  Google Scholar 

  20. Vercoutere W, Winters-Hilt S, Olsen H, Deamer D, Haussler D, Akeson M (2001) Rapid discrimination among individual DNA hairpin molecules at single-nucleotide resolution using an ion channel. Nat Biotechnol 19:248–252

    Article  CAS  Google Scholar 

  21. Meller A, Nivon L, Branton D (2001) Voltage-driven DNA translocations through a nanopore. Phys Rev Lett 86:3435–3438

    Article  CAS  Google Scholar 

  22. Meller A, Branton D (2002) Single molecule measurements of DNA transport through a nanopore. Electrophoresis 23:2583–2591

    Article  CAS  Google Scholar 

  23. Deamer D, Branton D (2002) Characterization of nucleic acids by nanopore analysis. Acc Chem Res 35:817–825

    Article  CAS  Google Scholar 

  24. Zwolak M, Ventra MD (2005) Electronic signature of DNA nucleotides via transverse transport. Nano Lett 5:421–424

    Article  CAS  Google Scholar 

  25. Gracheva ME, Aksimentiev A, Leburton J-P (2006) Electrical signatures of single-stranded DNA with single base mutations in a nanopore capacitor. Nanotechnology 17:3160–3165

    Article  CAS  Google Scholar 

  26. Meller A (2003) Dynamics of polynucleotide transport through nanometre-scale pores. J Phys Condens Matter 15:R581–R607

    Article  CAS  Google Scholar 

  27. Iqbal SM, Akin D, Bashir R (2007) Solid-state nanopore channels with DNA selectivity. Nature 2:243–248

    CAS  Google Scholar 

  28. Wanunu M, Meller A (2007) Chemically modified solid-state nanopores. Nano Lett 7:1580–1585

    Article  CAS  Google Scholar 

  29. van-den Hout M, Krapf D, Keyser U, Lemay S, Dekker N, Dekker C (2007) Studying RNA folding using solid state nanopores and optical tweezers. Biophys J 92:227A

    Google Scholar 

  30. Tropini C, Marziali A (2007) Multi-nanopore force spectroscopy for DNA analysis. Biophys J 92:1632–1637

    Article  CAS  Google Scholar 

  31. Gracheva ME, Melnikov DV, Leburton J-P (2008) Multilayered semiconductor membranes for nanopore ionic conductance modulation. ACS Nano 2:2349–2355

    Article  CAS  Google Scholar 

  32. Lanzerath F, Buca D, Trinkaus H, Goryll M, Mantl S, Knoch J, Breuer U, Skorupa W, Ghyselen B (2008) J Appl Phys 104:044908.

    Google Scholar 

  33. Vidal J, Gracheva ME, Leburton J-P (2007) Electrically tunable solid-state silicon nanopore ion filter. Nanoscale Res Lett 2:61–68

    Article  CAS  Google Scholar 

  34. Sansom MS, Smith GR, Adcock C, Biggin PC (1997) The dielectric properties of water within model transbilayer pores. Biophys J 73:2404–2415

    Article  CAS  Google Scholar 

  35. Sze SM (1981) Physics of semiconductor devices. Wiley, New York

    Google Scholar 

  36. Selberherr S (1984) Analysis and simulation of semiconductor devices. Springer, Wien

    Book  Google Scholar 

  37. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2001) Numerical recipes in Fortran 77. Cambridge University Press, Cambridge

    Google Scholar 

  38. Watari N, Doi M, Larson R (2008) Fluidic trapping of deformable polymers in microflows. Phys Rev E Stat Nonlin Soft Matter Phys 78:01180111

    Article  Google Scholar 

  39. Kenward M, Dorfman KD (2009) Brownian dynamics simulations of single-stranded DNA hairpins. J Chem Phys 130:095101

    Article  Google Scholar 

  40. Muthukumar M, Kong CY (2006) Simulation of polymer translocation through protein channels. Proc Natl Acad Sci USA 103:5273–5278

    Article  CAS  Google Scholar 

  41. Kong CY, Muthukumar M (2002) Modeling of polynucleotide translocation through protein pores and nanotubes. Electrophoresis 23:2697–2703

    Article  CAS  Google Scholar 

  42. Smith SB, Cui YJ, Bustamante C (1996) Science 271:795–799

    Article  CAS  Google Scholar 

  43. Fyta M, Melchionna S, Bernaschi M, Kaxiras E, Succi S (2009) Numerical simulation of conformational variability in biopolymer translocation through wide nanopores. J Stat Mech 6:06009

    Article  Google Scholar 

  44. Bhattacharya A, Binder K (2010) Out-of-equilibrium characteristics of a forced translocating chain through a nanopore. Phys Rev E Stat Nonlin Soft Matter Phys 81:041804

    Article  Google Scholar 

  45. Nikolaev A, Gracheva M (2011) Simulation of ionic current through the nanopore in a double-layered semiconductor membrane. Nanotechnology 22:165202

    Article  Google Scholar 

  46. Muthukumar M (2007) Mechanism of DNA transport through pores. Annu Rev Biophys Biomol Struct 36:435–450

    Article  CAS  Google Scholar 

  47. Luan BQ, Aksimentiev A (2008) Electro-osmotic screening of the DNA charge in a nanopore. Phys Rev E Stat Nonlin Soft Matter Phys 78:021912

    Article  Google Scholar 

  48. Reiner JE, Kasianowicz JJ, Nablo BJ, Robertson JWF (2010) Theory for polymer analysis using nanopore-based single-molecule mass spectrometry. Proc Natl Acad Sci USA 107:12080–12085

    Article  CAS  Google Scholar 

  49. Corry B, Kuyucak S, Chung S (2000) Tests of continuum theories as models of ion channels. II. Poisson-Nernst-Planck theory versus Brownian dynamics. Biophys J 78:2364–2381

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the NSF through TeraGrid (grant TG-PHY110023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria E. Gracheva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Melnikov, D.V., Nikolaev, A., Leburton, JP., Gracheva, M.E. (2012). Polymer Translocation Through an Electrically Tunable Nanopore in a Multilayered Semiconductor Membrane. In: Gracheva, M. (eds) Nanopore-Based Technology. Methods in Molecular Biology, vol 870. Humana Press. https://doi.org/10.1007/978-1-61779-773-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-773-6_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-772-9

  • Online ISBN: 978-1-61779-773-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics