Optimization of the Molecular Dynamics Method for Simulations of DNA and Ion Transport Through Biological Nanopores

  • David B. Wells
  • Swati Bhattacharya
  • Rogan Carr
  • Christopher Maffeo
  • Anthony Ho
  • Jeffrey Comer
  • Aleksei AksimentievEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 870)


Molecular dynamics (MD) simulations have become a standard method for the rational design and interpretation of experimental studies of DNA translocation through nanopores. The MD method, however, offers a multitude of algorithms, parameters, and other protocol choices that can affect the accuracy of the resulting data as well as computational efficiency. In this chapter, we examine the most popular choices offered by the MD method, seeking an optimal set of parameters that enable the most computationally efficient and accurate simulations of DNA and ion transport through biological nanopores. In particular, we examine the influence of short-range cutoff, integration timestep and force field parameters on the temperature and concentration dependence of bulk ion conductivity, ion pairing, ion solvation energy, DNA structure, DNA–ion interactions, and the ionic current through a nanopore.

Key words

Molecular dynamics Transmembrane transport Nucleic acids Membrane proteins Bionanotechnology Computer simulations 


  1. 1.
    Aksimentiev A (2010) Deciphering ionic current signatures of DNA transport through a nanopore. Nanoscale 2:468–483CrossRefGoogle Scholar
  2. 2.
    MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck J, Field MJ et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616CrossRefGoogle Scholar
  3. 3.
    Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM et al (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197CrossRefGoogle Scholar
  4. 4.
    Freddolino P, Harrison C, Liu Y, Schulten K (2010) Challenges in protein-folding simulations. Nat Phys 6:751–758CrossRefGoogle Scholar
  5. 5.
    Frenkel D, Smit B (2002) Understanding molecular simulation from algorithms to applications. Academic, CaliforniaGoogle Scholar
  6. 6.
    Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802CrossRefGoogle Scholar
  7. 7.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  8. 8.
    Miyamoto S, Kollman PA (1992) SETTLE: an analytical version of the SHAKE and RATTLE algorithm for rigid water molecules. J Comput Chem 13:952–962CrossRefGoogle Scholar
  9. 9.
    Beglov D, Roux B (1994) Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations. J Chem Phys 100:9050–9063CrossRefGoogle Scholar
  10. 10.
    Joung IS, Cheatham TE III (2008) Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J Phys Chem B 112: 9020–9041CrossRefGoogle Scholar
  11. 11.
    MacKerell A Jr, Banavali N (2000) All-atom empirical force field for nucleic acids: II. application to molecular dynamics simulations of dna and rna in solution. J Comput Chem 21: 105–120CrossRefGoogle Scholar
  12. 12.
    Perez A, Marchan I, Svozil D, Sponer J, Cheatham TE, Laughton CA et al (2007) Refinement of the AMBER force field for nucleic acids: Improving the description of α/γ conformers. Biophys J 92:3817–3829CrossRefGoogle Scholar
  13. 13.
    MacKerrel AD, Feig M, Brooks CL III (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25: 1400–1415CrossRefGoogle Scholar
  14. 14.
    Andersen H (1983) Rattle: A “velocity” version of the Shake algorithm for Molecular Dynamics calculations. J Comput Chem 52: 24–34Google Scholar
  15. 15.
    Benz R, Castro-Román F, Tobias D, White S (2005) Experimental validation of molecular dynamics simulations of lipid bilayers: a new approach. Biophys J 88: 805–817CrossRefGoogle Scholar
  16. 16.
    Sonne J, Jensen M, Hansen F, Hemmingsen L, Peters G (2007) Reparameterization of all-atom dipalmitoylphosphatidylcholine lipid parameters enables simulation of fluid bilayers at zero tension. Biophys J 92:4157–4167CrossRefGoogle Scholar
  17. 17.
    Klauda J, Venable R, Freites J, O’Connor J, Tobias D, Mondragon-Ramirez C et al (2010) Update of the charmm all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114:7830–7843CrossRefGoogle Scholar
  18. 18.
    Xu D, Phillips JC, Schulten K (1996) Protein response to external electric fields: Relaxation, hysteresis, and echo. J Phys Chem 100: 12108–12121CrossRefGoogle Scholar
  19. 19.
    Heng JB, Aksimentiev A, Ho C, Marks P, Grinkova YV, Sligar S et al (2006) The electromechanics of DNA in a synthetic nanopore. Biophys J 90:1098–1106CrossRefGoogle Scholar
  20. 20.
    Cruz-Chu ER, Aksimentiev A, Schulten K (2006) Water-silica force field for simulating nanodevices. J Phys Chem B 110: 21497–21508CrossRefGoogle Scholar
  21. 21.
    Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA (2001) Ion-beam sculpting at nanometre length scales. Nature 412: 166–169CrossRefGoogle Scholar
  22. 22.
    Li J, Gershow M, Stein D, Brandin E, Golovchenko JA (2003) DNA molecules and configurations in a solid-state nanopore microscope. Nat Mater 2:611–615CrossRefGoogle Scholar
  23. 23.
    Chang H, Kosari F, Andreadakis G, Alam MA, Vasmatzis G, Bashir R (2004) DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels. Nano Lett 4: 1551–1556CrossRefGoogle Scholar
  24. 24.
    Heng JB, Ho C, Kim T, Timp R, Aksimentiev A, Grinkova YV et al (2004) Sizing DNA using a nanometer-diameter pore. Biophys J 87: 2905–2911CrossRefGoogle Scholar
  25. 25.
    Fologea D, Uplinger J, Thomas B, McNabb DS, Li J (2005) Slowing DNA translocation in a solid-state nanopore. Nano Lett 5: 1734–1737CrossRefGoogle Scholar
  26. 26.
    Storm AJ, Chen JH, Zandbergen HW, Dekker C (2005) Translocation of double-strand DNA through a silicon oxide nanopore. Phys Rev E Stat Nonlin Soft Matter Phys 71: 051903–051913CrossRefGoogle Scholar
  27. 27.
    Soni GV, Meller A (2007) Progress toward ultrafast DNA sequencing using solid-state nanopores. Clin Chem 53:1996–2001CrossRefGoogle Scholar
  28. 28.
    Aksimentiev A, Brunner R, Cruz-Chu ER, Comer J, Schulten K (2009) Modeling transport through synthetic nanopores. IEEE Nanotechnol Mag 3:20–28CrossRefGoogle Scholar
  29. 29.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald. An N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  30. 30.
    Batcho PF, Case DA, Schlick T (2001) Optimized particle-mesh Ewald/multiple-time step integration for molecular dynamics simulations. J Chem Phys 115:4003–4018CrossRefGoogle Scholar
  31. 31.
    Skeel RD, Hardy DJ, Phillips JC (2006) Correcting mesh-based force calculations to conserve both energy and momentum in molecular dynamics simulations. J Comput Phys 225:1–5CrossRefGoogle Scholar
  32. 32.
    Kubo R, Toda M, Hashitsume N (1991) Statistical physics II: nonequilibrium statistical mechanics. Springer, New YorkGoogle Scholar
  33. 33.
    Koopman E, Lowe C (2006) Advantages of a Lowe-Andersen thermostat in molecular dynamics simulations. J Chem Phys 124:204103CrossRefGoogle Scholar
  34. 34.
    Aksimentiev A, Schulten K (2005) Imaging alpha-hemolysin with molecular dynamics: Ionic conductance, osmotic permeability and the electrostatic potential map. Biophys J 88: 3745–3761CrossRefGoogle Scholar
  35. 35.
    Schmid R, Miah AM, Sapunov VN (2000) A new table of the thermodynamic quantities of ionic hydration: values and some applications (enthalpy–entropy compensation and born radii). Phys Chem Chem Phys 2:97–102CrossRefGoogle Scholar
  36. 36.
    Martinetz T, Schulten K (1994) Topology representing networks. Neural Netw 7:507–522CrossRefGoogle Scholar
  37. 37.
    Bhattacharya S, Muzard J, Payet L, Bockelman U, Aksimentiev A, Viasnoff V (2011) Rectification of the current in alpha-hemolysin pore depends on the cation type: the alkali series probed by MD simulations and experiments. J Phys Chem C Nanomater Interfaces 115:4255–4264CrossRefGoogle Scholar
  38. 38.
    Coury L (1999) Conductance measurements part 1: theory. Curr Sep 18:91–96Google Scholar
  39. 39.
    Pezeshki S, Chimerel C, Bessonov AN, Winterhalter M, Kleinekathofer U (2009) Understanding ion conductance on a molecular level: An all-atom modeling of the bacterial porin OmpF. Biophys J 97:1898–1906CrossRefGoogle Scholar
  40. 40.
    Feig M, Pettitt BM (1998) Structural equilibrium of DNA represented with different force fields. Biophys J 75:134–149CrossRefGoogle Scholar
  41. 41.
    van Dijk M, Bonvin AMJJ (2009) 3D-DART: a DNA structure modelling server. Nucleic Acids Res 37:W235–W239CrossRefGoogle Scholar
  42. 42.
    Lavery R, Moakher M, Maddocks JH, Petkeviciute D, Zakrzewska K (2009) Confor­mational analysis of nucleic acids revisited: Curves+. Nucleic Acids Res 37: 5917–5929CrossRefGoogle Scholar
  43. 43.
    Luan B, Aksimentiev A (2008) Electro-osmotic screening of the DNA charge in a nanopore. Phys Rev E Stat Nonlin Soft Matter Phys 78:021912CrossRefGoogle Scholar
  44. 44.
    Luan B, Aksimentiev A (2008) DNA attraction in monovalent and divalent electrolytes. J Am Chem Soc 130:15754–15755CrossRefGoogle Scholar
  45. 45.
    Maffeo C, Schöpflin R, Brutzer H, Stehr R, Aksimentiev A, Wedemann G et al (2010) DNA–DNA interactions in tight supercoils are described by a small effective charge density. Phys Rev Lett 105:158101CrossRefGoogle Scholar
  46. 46.
    Zhao Q, Comer J, Dimitrov V, Aksimentiev A, Timp G (2008) Stretching and unzipping nucleic acid hairpins using a synthetic nanopore. Nucleic Acids Res 36:1532–1541CrossRefGoogle Scholar
  47. 47.
    Comer J, Dimitrov V, Zhao Q, Timp G, Aksimentiev A (2009) Microscopic mechanics of hairpin DNA translocation through synthetic nanopores. Biophys J 96: 593–608CrossRefGoogle Scholar
  48. 48.
    Roux B (1996) Valence selectivity of the gramicidin channel: a molecular dynamics free energy perturbation study. Biophys J 71:3177–3185CrossRefGoogle Scholar
  49. 49.
    Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189CrossRefGoogle Scholar
  50. 50.
    Feller S, MacKerell A Jr (2000) An improved empirical potential energy function for molecular simulations of phospholipids. J Phys Chem B 104:7510–7515CrossRefGoogle Scholar
  51. 51.
    Brünger AT (1992) X-PLOR, Version 3.1: a system for x-ray crystallography and NMR. The Howard Hughes Medical Institute and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CTGoogle Scholar
  52. 52.
    Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14:33–38CrossRefGoogle Scholar
  53. 53.
    Mathé J, Aksimentiev A, Nelson DR, Schulten K, Meller A (2005) Orientation discrimination of single stranded DNA inside the α-hemolysin membrane channel. Proc Natl Acad Sci USA 102:12377–12382CrossRefGoogle Scholar
  54. 54.
    Faller M, Niederweis M, Schultz G (2004) The structure of a mycobacterial outer membrane channel. Science 303:1189–1192CrossRefGoogle Scholar
  55. 55.
    Derrington I, Butler T, Collins M, Manrao E, Pavlenok M, Niederweis M et al (2010) Nanopore DNA sequencing with MspA. Proc Natl Acad Sci USA 107:16060CrossRefGoogle Scholar
  56. 56.
    Yoo J., Aksimentiev A. (2012) Improved parameterization of Li+, Na+, K+, and Mg2+ ions for all-atom molecular dynamics simulations of nucleic acid systems. Journal of Physical Chemistry Letters, 3:45–50CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • David B. Wells
    • 1
  • Swati Bhattacharya
    • 1
  • Rogan Carr
    • 1
  • Christopher Maffeo
    • 1
  • Anthony Ho
    • 1
  • Jeffrey Comer
    • 1
  • Aleksei Aksimentiev
    • 2
    Email author
  1. 1.Department of PhysicsUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Physics and Beckman InstituteUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations