Skip to main content

Overview on AON Design

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 867))

Abstract

Antisense-mediated exon skipping is an attractive tool to study gene function as well as a promising therapeutic application for a number of diseases. In order for antisense oligonucleotides (AONs) to induce effective exon skipping during pre-mRNA splicing, they have to fulfill certain criteria. These include resistance against endo- and exonucleases and RNase H-induced cleavage and suitable thermodynamic properties. Furthermore, the AON-target sequence needs to be accessible and should contain sequence motives that are essential for proper inclusion of the exon into the mRNA. For most genes, only a few AONs have been designed, with the exception of the DMD gene, for which over 400 AONs targeting the majority of DMD exons have been reported. This allows retrospective analysis of effective and ineffective AONs to obtain guidelines to optimize future AON design.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Aartsma-Rus A, van Ommen GJ (2007) Antisense-mediated exon skipping: a versatile tool with therapeutic and research applications. RNA 13:1609–1624

    Article  PubMed  CAS  Google Scholar 

  2. Aartsma-Rus A (2010) Antisense-mediated modulation of splicing: therapeutic implications for Duchenne muscular dystrophy. RNA Biol 7:453–461

    Article  PubMed  CAS  Google Scholar 

  3. Aartsma-Rus A, Winter CL, Janson AAM et al (2005) Functional analysis of 114 exon-internal AONs for targeted DMD exon skipping: indication for steric hindrance of SR protein binding sites. Oligonucleotides 15:284–297

    Article  PubMed  CAS  Google Scholar 

  4. Aartsma-Rus A, van Vliet L, Hirschi M et al (2009) Guidelines for antisense oligonucleotide design and insight into splice-modulating mechanisms. Mol Ther 17:548–553

    Article  PubMed  CAS  Google Scholar 

  5. Aartsma-Rus A, Houlleberghs H, van Deutekom JC et al (2010) Exonic sequences provide better targets for antisense oligonucleotides than splice site sequences in the modulation of Duchenne muscular dystrophy splicing. Oligonucleotides 20:69–77

    Article  PubMed  CAS  Google Scholar 

  6. Popplewell LJ, Trollet C, Dickson G et al (2009) Design of phosphorodiamidate morpholino oligomers (PMOs) for the induction of exon skipping of the human DMD gene. Mol Ther 17:554–561

    Article  PubMed  CAS  Google Scholar 

  7. Wilton SD, Fall AM, Harding PL et al (2007) Antisense oligonucleotide-induced exon skipping across the human dystrophin gene transcript. Mol Ther 15:1288–1296

    Article  PubMed  CAS  Google Scholar 

  8. Aartsma-Rus A, Singh KH, Fokkema IF et al (2010) Therapeutic exon skipping for dysferlinopathies? Eur J Hum Genet 18:889–894

    Article  PubMed  CAS  Google Scholar 

  9. Aartsma-Rus A, van der Maarel S (2010) Reply to Levy et al. Eur J Hum Genet 18:971

    Article  Google Scholar 

  10. van Ommen GJ, van Deutekom J, Aartsma-Rus A (2008) The therapeutic potential of antisense-mediated exon skipping. Curr Opin Mol Ther 10:140–149

    PubMed  Google Scholar 

  11. Aartsma-Rus A, Kaman WE, Bremmer-Bout M et al (2004) Comparative analysis of antisense oligonucleotide analogs for tageted DMD exon 46 skipping in muscle cells. Gene Ther 11:1391–1398

    Article  PubMed  CAS  Google Scholar 

  12. Alter J, Lou F, Rabinowitz A et al (2006) Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology. Nat Med 12:175–177

    Article  PubMed  CAS  Google Scholar 

  13. Heemskerk H, de Winter C, van Kuik P et al (2010) Preclinical PK and PD studies on 2′-O-methyl-phosphorothioate RNA antisense oligonucleotides in the mdx mouse model. Mol Ther 18:1210–1217

    Article  PubMed  CAS  Google Scholar 

  14. Heemskerk HA, De Winter CL, de Kimpe SJ et al (2009) In vivo comparison of 2′-O-methyl phosphorothioate and morpholino antisense oligonucleotides for Duchenne muscular dystrophy exon skipping. J Gene Med 11:257–266

    Article  PubMed  CAS  Google Scholar 

  15. Lu QL, Rabinowitz A, Chen YC et al (2005) Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci USA 102:198–203

    Article  PubMed  CAS  Google Scholar 

  16. Malerba A, Thorogood FC, Dickson G et al (2009) Dosing regimen has a significant impact on the efficiency of morpholino oligomer-induced exon skipping in mdx mice. Hum Gene Ther 20:955–965

    Article  PubMed  CAS  Google Scholar 

  17. Kurreck J (2003) Antisense technologies. Improvement through novel chemical modifications. Eur J Biochem 270:1628–1644

    Article  PubMed  CAS  Google Scholar 

  18. Sproat BS, Lamond AI, Beijer B et al (1989) Highly efficient chemical synthesis of 2′-O-methyloligoribonucleotides and tetrabiotinylated derivatives; novel probes that are resistant to degradation by RNA or DNA specific nucleases. Nucleic Acids Res 17:3373–3386

    Article  PubMed  CAS  Google Scholar 

  19. De Clercq E, Eckstein F, Sternbach H et al (1969) Interferon induction by and ribonuclease sensitivity of thiophosphate-substituted polyribonucleotides. Antimicrob Agents Chemother 9:187–191

    PubMed  Google Scholar 

  20. Summerton J, Weller D (1997) Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7:187–195

    Article  PubMed  CAS  Google Scholar 

  21. Heemskerk H, De Winter CL, van Ommen GJ et al (2009) Development of antisense-mediated exon skipping as a treatment for Duchenne muscular dystrophy. Ann N Y Acad Sci 1175:71–79

    Article  PubMed  CAS  Google Scholar 

  22. Harding PL, Fall AM, Honeyman K et al (2007) The influence of antisense oligonucleotide length on dystrophin exon skipping. Mol Ther 15:157–166

    Article  PubMed  CAS  Google Scholar 

  23. Wee KB, Pramono ZA, Wang JL et al (2008) Dynamics of co-transcriptional pre-mRNA folding influences the induction of dystrophin exon skipping by antisense oligonucleotides. PLoS One 3:e1844

    Article  PubMed  Google Scholar 

  24. Mathews DH, Sabina J, Zuker M et al (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940

    Article  PubMed  CAS  Google Scholar 

  25. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  PubMed  CAS  Google Scholar 

  26. Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3:285–298

    Article  PubMed  CAS  Google Scholar 

  27. Desmet FO, Hamroun D, Lalande M et al (2009) Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37:e67

    Article  PubMed  Google Scholar 

  28. Aartsma-Rus A, Kaman WE, Weij R et al (2006) Exploring the frontiers of therapeutic exon skipping for Duchenne muscular dystrophy by double targeting within one or multiple exons. Mol Ther 14:401–407

    Article  PubMed  CAS  Google Scholar 

  29. Adams AM, Harding PL, Iversen PL et al (2007) Antisense oligonucleotide induced exon skipping and the dystrophin gene transcript: cocktails and chemistries. BMC Mol Biol 8:57

    Article  PubMed  Google Scholar 

  30. Aartsma-Rus A, van Ommen GJ, Kaplan JC (2010) Innovating therapies for muscle diseases. In: Dulac O, Lassonde M, Sarnat H (eds) Handbook of clinical neurology, 3rd series, 3rd edn. Elsevier, Chennai, India

    Google Scholar 

Download references

Acknowledgments

Willeke van Roon and Mark Einderhand are acknowledged for proofreading the manuscript and helpful comments and suggestions. The author receives funding from ZonMw (the Netherlands), the Dutch Duchenne Parent Project (the Netherlands), Spieren voor spieren (Prinses Beatrix Foundation, the Netherlands), and the European Union (LUMC is partner in the TREAT-NMD network of excellence (LSHM-CT-2006-036825) and the BIO-NMD project (HEALTH-F2-2009-241665)). The LUMC participates in the Center for Biomedical Genetics (the Netherlands) and the Center for Medical Systems Biology (the Netherlands).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annemieke Aartsma-Rus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Aartsma-Rus, A. (2012). Overview on AON Design. In: Aartsma-Rus, A. (eds) Exon Skipping. Methods in Molecular Biology, vol 867. Humana Press. https://doi.org/10.1007/978-1-61779-767-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-767-5_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-766-8

  • Online ISBN: 978-1-61779-767-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics