Skip to main content

Identification of Peptides for Tissue-Specific Delivery

  • Protocol
  • First Online:
Exon Skipping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 867))

  • 2667 Accesses

Abstract

Antisense-mediated exon skipping has shown to be a promising therapeutic approach and is in clinical trials for Duchenne muscular dystrophy. However, after systemic treatment the majority of the injected antisense oligonucleotides (AONs) will not end up in the intended tissue. This mistargeting of AONs might have detrimental effects, especially with long-term treatment and continuous accumulation of AONs. Further, even when no detrimental effects occur, mistargeted AONs are lost for exon skipping in the intended tissue. One way to reduce the amount of mistargeted AONs is by adding a peptide that specifically binds to and is taken up by the intended tissue. Such peptides can be found by screening phage display libraries. With in silico, in vitro, and in vivo testing, the peptides that bind the intended tissue most efficiently and most specifically can be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van Deutekom JC, Janson AA, Ginjaar IB, Frankhuizen WS, Aartsma-Rus A, Bremmer-Bout M, den Dunnen JT, Koop K, van der Kooi AJ, Goemans NM, de Kimpe SJ, Ekhart PF, Venneker EH, Platenburg GJ, Verschuuren JJ, van Ommen GJ (2007) N Engl J Med 357:2677–2686

    Article  PubMed  Google Scholar 

  2. Kinali M, Arechavala-Gomeza V, Feng L, Cirak S, Hunt D, Adkin C, Guglieri M, Ashton E, Abbs S, Nihoyannopoulos P, Garralda ME, Rutherford M, McCulley C, Popplewell L, Graham IR, Dickson G, Wood MJ, Wells DJ, Wilton SD, Kole R, Straub V, Bushby K, Sewry C, Morgan JE, Muntoni F (2009) Lancet Neurol 8:918–928

    Article  PubMed  CAS  Google Scholar 

  3. Heemskerk HA, De Winter CL, de Kimpe SJ, Kuik-Romeijn P, Heuvelmans N, Platenburg GJ, van Ommen GJ, van Deutekom JC, Aartsma-Rus A (2009) J Gene Med 11:257–266

    Article  PubMed  CAS  Google Scholar 

  4. Heemskerk H, De Winter CL, van Ommen GJ, van Deutekom JC, Aartsma-Rus A (2009) Ann N Y Acad Sci 1175:71–79

    Article  PubMed  CAS  Google Scholar 

  5. Scott JK, Smith GP (1990) Science 249:386–390

    Article  PubMed  CAS  Google Scholar 

  6. Kehoe JW, Kay BK (2005) Chem Rev 105:4056–4072

    Article  PubMed  CAS  Google Scholar 

  7. Pasqualini R, Moeller BJ, Arap W (2010) Semin Thromb Hemost 36:343–351

    Article  PubMed  CAS  Google Scholar 

  8. Zhang L, Hoffman JA, Ruoslahti E (2005) Circulation 112:1601–1611

    Article  PubMed  CAS  Google Scholar 

  9. Kuzmicheva GA, Jayanna PK, Sorokulova IB, Petrenko VA (2009) Protein Eng Des Sel 22:9–18

    Article  PubMed  CAS  Google Scholar 

  10. Duchrow T, Shtatland T, Guettler D, Pivovarov M, Kramer S, Weissleder R (2009) BMC Bioinformatics 10:317

    Article  PubMed  Google Scholar 

  11. Huang J, Ru B, Li S, Lin H, Guo FB (2010) J Biomed Biotechnol 2010:101932

    PubMed  Google Scholar 

  12. Brammer LA, Bolduc B, Kass JL, Felice KM, Noren CJ, Hall MF (2008) Anal Biochem 373:88–98

    Article  PubMed  CAS  Google Scholar 

  13. Di Niro R, Sulic AM, Mignone F, D’Angelo S, Bordoni R, Iacono M, Marzari R, Gaiotto T, Lavric M, Bradbury AR, Biancone L, Zevin-Sonkin D, De Bellis G, Santoro C, Sblattero D (2010) Nucleic Acids Res 38:e110

    Article  PubMed  Google Scholar 

  14. Dias-Neto E, Nunes DN, Giordano RJ, Sun J, Botz GH, Yang K, Setubal JC, Pasqualini R, Arap W (2009) PLoS One 4:e8338

    Article  PubMed  Google Scholar 

  15. ’t Hoen PA, Jirka SM, Ten Broeke BR, Schultes EA, Aguilera B, Pang KH, Heemskerk H, Aartsma-Rus A, van Ommen GJ, den Dunnen JT (2012) Anal Biochem 421(2):622–631

    Article  PubMed  CAS  Google Scholar 

  16. Molenaar TJ, Michon I, de Haas SA, Van Berkel TJ, Kuiper J, Biessen EA (2002) Virology 293:182–191

    Article  PubMed  CAS  Google Scholar 

  17. Nicol CG, Denby L, Lopez-Franco O, Masson R, Halliday CA, Nicklin SA, Kritz A, Work LM, Baker AH (2009) FEBS Lett 583:2100–2107

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Heemskerk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Heemskerk, H. (2012). Identification of Peptides for Tissue-Specific Delivery. In: Aartsma-Rus, A. (eds) Exon Skipping. Methods in Molecular Biology, vol 867. Humana Press. https://doi.org/10.1007/978-1-61779-767-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-767-5_24

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-766-8

  • Online ISBN: 978-1-61779-767-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics