Skip to main content

Antisense-Mediated Exon Inclusion

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 867))

Abstract

Exon skipping induced by gene mutations is a common mechanism responsible for many genetic diseases. A practical approach to correct the aberrant splicing of defective genes is to use antisense oligonucleotides (ASOs). The recognition of splice sites and the regulation of splicing involve multiple positive or negative cis-acting elements and trans-acting factors. Base-pairing of ASOs to a negative element in a targeted pre-mRNA blocks the binding of splicing repressors to this cis-element and/or disrupts an unfavorable secondary structure; as a result, the ASO restores exon inclusion. For example, we have recently shown that appropriate 2′-O-(2-methoxyethyl) (MOE) phosphorothioate-modified ASOs can efficiently correct survival motor neuron 2 (SMN2) exon 7 splicing in a cell-free splicing assay, in cultured human cells—including patient fibroblasts—and in both peripheral tissues and the CNS of SMA mouse models. These ASOs are promising drug leads for SMA therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lopez-Bigas N, Audit B, Ouzounis C, Parra G, Guigo R (2005) FEBS Lett 579:1900–1903

    Article  PubMed  CAS  Google Scholar 

  2. Anderson SL, Coli R, Daly IW, Kichula EA, Rork MJ, Volpi SA, Ekstein J, Rubin BY (2001) Am J Hum Genet 68:753–758

    Article  PubMed  CAS  Google Scholar 

  3. Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, Borodina T, Soldatov A, Parkhomchuk D, Schmidt D, O’Keeffe S, Haas S, Vingron M, Lehrach H, Yaspo ML (2008) Science 321:956–960

    Article  PubMed  CAS  Google Scholar 

  4. Sazani P, Gemignani F, Kang SH, Maier MA, Manoharan M, Persmark M, Bortner D, Kole R (2002) Nat Biotechnol 20:1228–1233

    Article  PubMed  CAS  Google Scholar 

  5. Hua Y, Vickers TA, Baker BF, Bennett CF, Krainer AR (2007) PLoS Biol 5:e73

    Article  PubMed  Google Scholar 

  6. Hua Y, Vickers TA, Okunola HL, Bennett CF, Krainer AR (2008) Am J Hum Genet 82:834–848

    Article  PubMed  CAS  Google Scholar 

  7. Hua Y, Sahashi K, Hung G, Rigo F, Passini MA, Bennett CF, Krainer AR (2010) Genes Dev 24:1634–1644

    Article  PubMed  CAS  Google Scholar 

  8. Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, Cruaud C, Millasseau P, Zeviani M et al (1995) Cell 80:155–165

    Article  PubMed  CAS  Google Scholar 

  9. Lorson CL, Hahnen E, Androphy EJ, Wirth B (1999) Proc Natl Acad Sci USA 96:6307–6311

    Article  PubMed  CAS  Google Scholar 

  10. Monani UR, Lorson CL, Parsons DW, Prior TW, Androphy EJ, Burghes AH, McPherson JD (1999) Hum Mol Genet 8:1177–1183

    Article  PubMed  CAS  Google Scholar 

  11. Cartegni L, Krainer AR (2002) Nat Genet 30:377–384

    Article  PubMed  CAS  Google Scholar 

  12. Kashima T, Manley JL (2003) Nat Genet 34:460–463

    Article  PubMed  CAS  Google Scholar 

  13. Mayeda A, Krainer AR (1999) Methods Mol Biol 118:315–321

    PubMed  CAS  Google Scholar 

  14. Mayeda A, Krainer AR (1999) Methods Mol Biol 118:309–314

    PubMed  CAS  Google Scholar 

  15. Mattis VB, Butchbach ME, Lorson CL (2008) J Neurosci Methods 175:36–43

    Article  PubMed  Google Scholar 

  16. Saito T (2006) Nat Protoc 1:1552–1558

    Article  PubMed  CAS  Google Scholar 

  17. Smith RA, Miller TM, Yamanaka K, Monia BP, Condon TP, Hung G, Lobsiger CS, Ward CM, McAlonis-Downes M, Wei H, Wancewicz EV, Bennett CF, Cleveland DW (2006) J Clin Invest 116:2290–2296

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Drs C. Frank Bennett, Timothy A. Vickers, Brenda F. Baker, Gene Hung, and Frank Rigo at Isis Pharmaceuticals for providing MOE ASOs, for many helpful discussions, and sharing protocols, as well as Dr. Kentaro Sahashi at Cold Spring Harbor Laboratory for helping to implement the embryonic ICV injection procedure. The relevant research in the authors’ laboratory was generously supported by the Muscular Dystrophy Association, the National Institute of Neurological Disorders and Stroke, and the SMA Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian R. Krainer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hua, Y., Krainer, A.R. (2012). Antisense-Mediated Exon Inclusion. In: Aartsma-Rus, A. (eds) Exon Skipping. Methods in Molecular Biology, vol 867. Humana Press. https://doi.org/10.1007/978-1-61779-767-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-767-5_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-766-8

  • Online ISBN: 978-1-61779-767-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics