Skip to main content

Bioinformatics and Mutations Leading to Exon Skipping

  • Protocol
  • First Online:
Exon Skipping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 867))

Abstract

Our knowledge about human genes and the consequences of mutations leading to human genetic diseases has drastically improved over the last few years. It has been recognized that many mutations are indeed pathogenic because they impact the mRNA rather than the protein itself. With our better understanding of the very complex mechanism of splicing, various bioinformatics tools have been developed. They are now frequently used not only to search for sequence motifs corresponding to splicing signals (splice sites, branch points, ESE, and ESS) but also to predict the impact of mutations on these signals. We now need to address the impact of mutations that affect the splicing process, as their consequences could vary from the activation of cryptic signals to the skipping of one or multiple exons. Despite the major developments of the bioinformatics field coupled to experimental data generated on splicing, it is today still not possible to efficiently predict the consequences of mutations impacting splicing signals, especially to predict if they will lead to exon skipping or to cryptic splice site activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamroun D, Beroud C, Fontaine B, Kaplan JC (2005) Introducing the online version of the gene table for neuromuscular disease (nuclear genes only). Neuromuscul Disord 15:88

    Article  PubMed  Google Scholar 

  2. Tuffery-Giraud S, Beroud C, Leturcq F, Yaou RB, Hamroun D, Michel-Calemard L, Moizard MP, Bernard R, Cossee M, Boisseau P et al (2009) Genotype-phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD-DMD database: a model of nationwide knowledgebase. Hum Mutat 30:934–945

    Article  PubMed  CAS  Google Scholar 

  3. Beroud C, Hamroun D, Collod-Beroud G, Boileau C, Soussi T, Claustres M (2005) UMD (Universal Mutation Database): 2005 update. Hum Mutat 26:184–191

    Article  PubMed  CAS  Google Scholar 

  4. Cooper DN, Stenson PD, Chuzhanova NA (2006) The Human Gene Mutation Database (HGMD) and its exploitation in the study of mutational mechanisms. Curr Protoc Bioinformatics Chapter 1, Unit 1 13

    Google Scholar 

  5. Jurica MS, Moore MJ (2003) Pre-mRNA splicing: awash in a sea of proteins. Mol Cell 12:5–14

    Article  PubMed  CAS  Google Scholar 

  6. Burge CB, Karlin S (1998) Finding the genes in genomic DNA. Curr Opin Struct Biol 8:346–354

    Article  PubMed  CAS  Google Scholar 

  7. Sharp PA, Burge CB (1997) Classification of introns: U2-type or U12-type. Cell 91:875–879

    Article  PubMed  CAS  Google Scholar 

  8. Boldina G, Ivashchenko A, Regnier M (2009) Using profiles based on nucleotide hydrophobicity to define essential regions for splicing. Int J Biol Sci 5:13–19

    Article  PubMed  CAS  Google Scholar 

  9. Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C (2009) Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37:e67

    Article  PubMed  Google Scholar 

  10. Senapathy P, Shapiro MB, Harris NL (1990) Splice junctions, branch point sites, and exons: sequence statistics, identification, and applications to genome project. Methods Enzymol 183:252–278

    Article  PubMed  CAS  Google Scholar 

  11. Gao K, Masuda A, Matsuura T, Ohno K (2008) Human branch point consensus sequence is yUnAy. Nucleic Acids Res 36:2257–2267

    Article  PubMed  CAS  Google Scholar 

  12. Wang Z, Burge CB (2008) Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14:802–813

    Article  PubMed  CAS  Google Scholar 

  13. Lim LP, Burge CB (2001) A computational analysis of sequence features involved in recognition of short introns. Proc Natl Acad Sci USA 98:11193–11198

    Article  PubMed  CAS  Google Scholar 

  14. Kralovicova J, Vorechovsky I (2007) Global control of aberrant splice-site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition. Nucleic Acids Res 35:6399–6413

    Article  PubMed  CAS  Google Scholar 

  15. Chasin LA (2007) Searching for splicing motifs. Adv Exp Med Biol 623:85–106

    Article  PubMed  Google Scholar 

  16. Shepard PJ, Hertel KJ (2009) The SR protein family. Genome Biol 10:242

    Article  PubMed  Google Scholar 

  17. Martinez-Contreras R, Cloutier P, Shkreta L, Fisette JF, Revil T, Chabot B (2007) hnRNP proteins and splicing control. Adv Exp Med Biol 623:123–147

    Article  PubMed  Google Scholar 

  18. Zhang XH, Leslie CS, Chasin LA (2005) Computational searches for splicing signals. Methods 37:292–305

    Article  PubMed  CAS  Google Scholar 

  19. Desmet FO, Hamroun D, Collod-Beroud G, Claustres M, Beroud, C (2010) In: Mohan RM (ed), Research advances in nucleic acids research, vol 1. Global Research Network, Kerala, pp 1–16

    Google Scholar 

  20. Houdayer C, Dehainault C, Mattler C, Michaux D, Caux-Moncoutier V, Pages-Berhouet S, d’Enghien CD, Lauge A, Castera L, Gauthier-Villars M et al (2008) Evaluation of in silico splice tools for decision-making in molecular diagnosis. Hum Mutat 29:975–982

    Article  PubMed  CAS  Google Scholar 

  21. Schwartz S, Hall E, Ast G (2009) SROOGLE: webserver for integrative, user-friendly visualization of splicing signals. Nucleic Acids Res 37:W189–W192

    Article  PubMed  CAS  Google Scholar 

  22. Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR (2003) ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 31:3568–3571

    Article  PubMed  CAS  Google Scholar 

  23. Fairbrother WG, Yeo GW, Yeh R, Goldstein P, Mawson M, Sharp PA, Burge CB (2004) RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons. Nucleic Acids Res 32:W187–W190

    Article  PubMed  CAS  Google Scholar 

  24. Sironi M, Menozzi G, Riva L, Cagliani R, Comi GP, Bresolin N, Giorda R, Pozzoli U (2004) Silencer elements as possible inhibitors of pseudoexon splicing. Nucleic Acids Res 32:1783–1791

    Article  PubMed  CAS  Google Scholar 

  25. Wang Z, Rolish ME, Yeo G, Tung V, Mawson M, Burge CB (2004) Systematic identification and analysis of exonic splicing silencers. Cell 119:831–845

    Article  PubMed  CAS  Google Scholar 

  26. Zhang XH, Chasin LA (2004) Computational definition of sequence motifs governing constitutive exon splicing. Genes Dev 18:1241–1250

    Article  PubMed  CAS  Google Scholar 

  27. Goren A, Ram O, Amit M, Keren H, Lev-Maor G, Vig I, Pupko T, Ast G (2006) Comparative analysis identifies exonic splicing regulatory sequences – the complex definition of enhancers and silencers. Mol Cell 22:769–781

    Article  PubMed  CAS  Google Scholar 

  28. Zhang C, Li WH, Krainer AR, Zhang MQ (2008) RNA landscape of evolution for optimal exon and intron discrimination. Proc Natl Acad Sci USA 105:5797–5802

    Article  PubMed  CAS  Google Scholar 

  29. Woolfe A, Mullikin JC, Elnitski L (2010) Genomic features defining exonic variants that modulate splicing. Genome Biol 11:R20

    Article  PubMed  Google Scholar 

  30. Cotton RG, Auerbach AD, Beckmann JS, Blumenfeld OO, Brookes AJ, Brown AF, Carrera P, Cox DW, Gottlieb B, Greenblatt MS et al (2008) Recommendations for locus-specific databases and their curation. Hum Mutat 29:2–5

    Article  PubMed  CAS  Google Scholar 

  31. Béroud C, Hamroun D, Collod-Beroud G, Humbertclaude V, Tuffery-Giraud S, Claustres M (2007) In: Claustres M (ed.) Molecular genetic analysis of rare diseases in 2007: selected examples, vol 1. Research Signpost, pp 135–150

    Google Scholar 

  32. Beroud C, Collod-Beroud G, Boileau C, Soussi T, Junien C (2000) UMD (Universal mutation database): a generic software to build and analyze locus-specific databases. Hum Mutat 15:86–94

    Article  PubMed  CAS  Google Scholar 

  33. Fokkema IF, den Dunnen JT, Taschner PE (2005) LOVD: easy creation of a locus-specific sequence variation database using an “LSDB-in-a-box” approach. Hum Mutat 26:63–68

    Article  PubMed  CAS  Google Scholar 

  34. Amberger J, Bocchini CA, Scott AF, Hamosh A (2009) McKusick’s Online Mendelian Inheritance in Man (OMIM). Nucleic Acids Res 37:D793–D796

    Article  PubMed  CAS  Google Scholar 

  35. (2009) The Universal Protein Resource (UniProt) 2009. Nucleic Acids Res 37: D169–D174

    Google Scholar 

  36. den Dunnen JT, Antonarakis SE (2000) Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat 15:7–12

    Article  Google Scholar 

  37. Wain HM, Bruford EA, Lovering RC, Lush MJ, Wright MW, Povey S (2002) Guidelines for human gene nomenclature. Genomics 79:464–470

    Article  PubMed  CAS  Google Scholar 

  38. Yeo G, Burge CB (2004) Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol 11:377–394

    Article  PubMed  CAS  Google Scholar 

  39. Krawczak M, Thomas NS, Hundrieser B, Mort M, Wittig M, Hampe J, Cooper DN (2007) Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum Mutat 28:150–158

    Article  PubMed  CAS  Google Scholar 

  40. Konig H, Ponta H, Herrlich P (1998) Coupling of signal transduction to alternative pre-mRNA splicing by a composite splice regulator. EMBO J 17:2904–2913

    Article  PubMed  CAS  Google Scholar 

  41. Pagani F, Stuani C, Tzetis M, Kanavakis E, Efthymiadou A, Doudounakis S, Casals T, Baralle FE (2003) New type of disease causing mutations: the example of the composite exonic regulatory elements of splicing in CFTR exon 12. Hum Mol Genet 12:1111–1120

    Article  PubMed  CAS  Google Scholar 

  42. Bashyam MD (2009) Nonsense-mediated decay: linking a basic cellular process to human disease. Expert Rev Mol Diagn 9:299–303

    Article  PubMed  Google Scholar 

  43. Le Hir H, Izaurralde E, Maquat LE, Moore MJ (2000) The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO J 19:6860–6869

    Article  PubMed  Google Scholar 

  44. Wildeman M, van Ophuizen E, den Dunnen JT, Taschner PE (2008) Improving sequence variant descriptions in mutation databases and literature using the Mutalyzer sequence variation nomenclature checker. Hum Mutat 29:6–13

    Article  PubMed  CAS  Google Scholar 

  45. Monaco AP, Bertelson CJ, Liechti-Gallati S, Moser H, Kunkel LM (1988) An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 2:90–95

    Article  PubMed  CAS  Google Scholar 

  46. Zeng F, Ren ZR, Huang SZ, Kalf M, Mommersteeg M, Smit M, White S, Jin CL, Xu M, Zhou DW et al (2008) Array-MLPA: comprehensive detection of deletions and duplications and its application to DMD patients. Hum Mutat 29:190–197

    Article  PubMed  CAS  Google Scholar 

  47. Wildforster V, Dekomien G (2009) Detecting copy number variations in autosomal recessive limb-girdle muscular dystrophies using a multiplex ligation-dependent probe amplification (MLPA) assay. Mol Cell Probes 23:55–59

    Article  PubMed  Google Scholar 

  48. Barrett MT, Scheffer A, Ben-Dor A, Sampas N, Lipson D, Kincaid R, Tsang P, Curry B, Baird K, Meltzer PS et al (2004) Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc Natl Acad Sci USA 101:17765–17770

    Article  PubMed  CAS  Google Scholar 

  49. Beroud C, Tuffery-Giraud S, Matsuo M, Hamroun D, Humbertclaude V, Monnier N, Moizard MP, Voelckel MA, Calemard LM, Boisseau P et al (2007) Multiexon skipping leading to an artificial DMD protein lacking amino acids from exons 45 through 55 could rescue up to 63% of patients with Duchenne muscular dystrophy. Hum Mutat 28:196–202

    Article  PubMed  CAS  Google Scholar 

  50. Sinnreich M, Therrien C, Karpati G (2006) Lariat branch point mutation in the dysferlin gene with mild limb-girdle muscular dystrophy. Neurology 66:1114–1116

    Article  PubMed  Google Scholar 

  51. Wein N, Avril A, Bartoli M, Beley C, Chaouch S, Laforet P, Behin A, Butler-Browne G, Mouly V, Krahn M et al (2010) Efficient bypass of mutations in dysferlin deficient patient cells by antisense-induced exon skipping. Hum Mutat 31:136–142

    Article  PubMed  CAS  Google Scholar 

  52. Borzutzky A, Crompton B, Bergmann AK, Giliani S, Baxi S, Martin M, Neufeld EJ, Notarangelo LD (2009) Reversible severe combined immunodeficiency phenotype secondary to a mutation of the proton-coupled folate transporter. Clin Immunol 133:287–294

    Article  PubMed  CAS  Google Scholar 

  53. Bourbon M, Duarte MA, Alves AC, Medeiros AM, Marques L, Soutar AK (2009) Genetic diagnosis of familial hypercholesterolaemia: the importance of functional analysis of potential splice-site mutations. J Med Genet 46:352–357

    Article  PubMed  CAS  Google Scholar 

  54. Burgess R, MacLaren RE, Davidson AE, Urquhart JE, Holder GE, Robson AG, Moore AT, Keefe RO, Black GC, Manson FD (2009) ADVIRC is caused by distinct mutations in BEST1 that alter pre-mRNA splicing. J Med Genet 46:620–625

    Article  PubMed  CAS  Google Scholar 

  55. Byrne JA, Strautnieks SS, Ihrke G, Pagani F, Knisely AS, Linton KJ, Mieli-Vergani G, Thompson RJ (2009) Missense mutations and single nucleotide polymorphisms in ABCB11 impair bile salt export pump processing and function or disrupt pre-messenger RNA splicing. Hepatology 49:553–567

    Article  PubMed  CAS  Google Scholar 

  56. Cotarelo RP, Fano O, Raducu M, Pena A, Tarilonte P, Mateos F, Simon R, Cabello A, Cruces J (2009) A double homozygous mutation in the POMT1 gene involving exon skipping gives rise to Walker-Warburg syndrome in two Spanish Gypsy families. Clin Genet 76:108–112

    Article  PubMed  CAS  Google Scholar 

  57. Daniele A, Scala I, Cardillo G, Pennino C, Ungaro C, Sibilio M, Parenti G, Esposito L, Zagari A, Andria G et al (2009) Functional and structural characterization of novel mutations and genotype-phenotype correlation in 51 phenylalanine hydroxylase deficient families from Southern Italy. FEBS J 276:2048–2059

    Article  PubMed  CAS  Google Scholar 

  58. Di Leo E, Magnolo L, Pinotti E, Martini S, Cortella I, Vitturi N, Rabacchi C, Wunsch A, Pucci F, Bertolini S et al (2009) Functional analysis of two novel splice site mutations of APOB gene in familial hypobetalipoproteinemia. Mol Genet Metab 96:66–72

    Article  PubMed  Google Scholar 

  59. Fogel BL, Lee JY, Perlman S (2009) Aberrant splicing of the senataxin gene in a patient with ataxia with oculomotor apraxia type 2. Cerebellum 8:448–453

    Article  PubMed  Google Scholar 

  60. Foley AR, Hu Y, Zou Y, Columbus A, Shoffner J, Dunn DM, Weiss RB, Bonnemann CG (2009) Autosomal recessive inheritance of classic Bethlem myopathy. Neuromuscul Disord 19:813–817

    Article  PubMed  Google Scholar 

  61. Furuichi T, Kayserili H, Hiraoka S, Nishimura G, Ohashi H, Alanay Y, Lerena JC, Aslanger AD, Koseki H, Cohn DH et al (2009) Identification of loss-of-function mutations of SLC35D1 in patients with Schneckenbecken dysplasia, but not with other severe spondylodysplastic dysplasias group diseases. J Med Genet 46:562–568

    Article  PubMed  CAS  Google Scholar 

  62. Goncalves V, Theisen P, Antunes O, Medeira A, Ramos JS, Jordan P, Isidro G (2009) A missense mutation in the APC tumor suppressor gene disrupts an ASF/SF2 splicing enhancer motif and causes pathogenic skipping of exon 14. Mutat Res 662:33–36

    Article  PubMed  CAS  Google Scholar 

  63. Guernsey DL, Jiang H, Evans SC, Ferguson M, Matsuoka M, Nightingale M, Rideout AL, Provost S, Bedard K, Orr A et al (2009) Mutation in pyrroline-5-carboxylate reductase 1 gene in families with cutis laxa type 2. Am J Hum Genet 85:120–129

    Article  PubMed  CAS  Google Scholar 

  64. Habara Y, Takeshima Y, Awano H, Okizuka Y, Zhang Z, Saiki K, Yagi M, Matsuo M (2009) In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1 G→A mutations in introns of the dystrophin gene. J Med Genet 46:542–547

    Article  PubMed  CAS  Google Scholar 

  65. Hahn MA, McDonnell J, Marsh DJ (2009) The effect of disease-associated HRPT2 mutations on splicing. J Endocrinol 201:387–396

    Article  PubMed  CAS  Google Scholar 

  66. Zhao L, Liang T, Xu J, Lin H, Li D, Qi Y (2009) Two novel FBN1 mutations associated with ectopia lentis and marfanoid habitus in two Chinese families. Mol Vis 15:826–832

    PubMed  CAS  Google Scholar 

  67. Zeevaert R, Foulquier F, Dimitrov B, Reynders E, Van Damme-Lombaerts R, Simeonov E, Annaert W, Matthijs G, Jaeken J (2009) Cerebrocostomandibular-like syndrome and a mutation in the conserved oligomeric Golgi complex, subunit 1. Hum Mol Genet 18:517–524

    Article  PubMed  CAS  Google Scholar 

  68. Vincent LM, Adams D, Hess RA, Ziegler SG, Tsilou E, Golas G, O’Brien KJ, White JG, Huizing M, Gahl WA (2009) Hermansky-Pudlak syndrome type 1 in patients of Indian descent. Mol Genet Metab 97:227–233

    Article  PubMed  CAS  Google Scholar 

  69. Vega AI, Perez-Cerda C, Desviat LR, Matthijs G, Ugarte M, Perez B (2009) Functional analysis of three splicing mutations identified in the PMM2 gene: toward a new therapy for congenital disorder of glycosylation type Ia. Hum Mutat 30:795–803

    Article  PubMed  CAS  Google Scholar 

  70. Thiel C, Wilken M, Zenker M, Sticht H, Fahsold R, Gusek-Schneider GC, Rauch A (2009) Independent NF1 and PTPN11 mutations in a family with neurofibromatosis-Noonan syndrome. Am J Med Genet A 149A:1263–1267

    Article  PubMed  CAS  Google Scholar 

  71. Taanman JW, Daras M, Albrecht J, Davie CA, Mallam EA, Muddle JR, Weatherall M, Warner TT, Schapira AH, Ginsberg L (2009) Characterization of a novel TYMP splice site mutation associated with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). Neuromuscul Disord 19:151–154

    Article  PubMed  Google Scholar 

  72. Saito M, Masunaga T, Ishiko A (2009) A novel de novo splice-site mutation in the COL7A1 gene in dominant dystrophic epidermolysis bullosa (DDEB): specific exon skipping could be a prognostic factor for DDEB pruriginosa. Clin Exp Dermatol 34:e934–e936

    Article  PubMed  CAS  Google Scholar 

  73. Rhyne J, Mantaring MM, Gardner DF, Miller M (2009) Multiple splice defects in ABCA1 cause low HDL-C in a family with hypoalphalipoproteinemia and premature coronary disease. BMC Med Genet 10:1

    Article  PubMed  Google Scholar 

  74. Qiao J, Han B, Liu BL, Chen X, Ru Y, Cheng KX, Chen FG, Zhao SX, Liang J, Lu YL et al (2009) A splice site mutation combined with a novel missense mutation of LHCGR cause male pseudohermaphroditism. Hum Mutat 30:E855–E865

    Article  PubMed  Google Scholar 

  75. Persichetti E, Chuzhanova NA, Dardis A, Tappino B, Pohl S, Thomas NS, Rosano C, Balducci C, Paciotti S, Dominissini S et al (2009) Identification and molecular characterization of six novel mutations in the UDP-N-acetylglucosamine-1-phosphotransferase gamma subunit (GNPTG) gene in patients with mucolipidosis III gamma. Hum Mutat 30:978–984

    Article  PubMed  CAS  Google Scholar 

  76. Perrotta S, Della Ragione F, Rossi F, Avvisati RA, Di Pinto D, De Mieri G, Scianguetta S, Mancusi S, De Falco L, Marano V et al (2009) Beta-spectrinBari: a truncated beta-chain responsible for dominant hereditary spherocytosis. Haematologica 94:1753–1757

    Article  PubMed  CAS  Google Scholar 

  77. Pelucchi S, Mariani R, Trombini P, Coletti S, Pozzi M, Paolini V, Barisani D, Piperno A (2009) Expression of hepcidin and other iron-related genes in type 3 hemochromatosis due to a novel mutation in transferrin receptor-2. Haematologica 94:276–279

    Article  PubMed  CAS  Google Scholar 

  78. Parera VE, Koole RH, Minderman G, Edixhoven A, Rossetti MV, Batlle A, de Rooij FW (2009) Novel null-allele mutations and genotype-phenotype correlation in Argentinean patients with erythropoietic protoporphyria. Mol Med 15:425–431

    Article  PubMed  CAS  Google Scholar 

  79. Nozu K, Iijima K, Kawai K, Nozu Y, Nishida A, Takeshima Y, Fu XJ, Hashimura Y, Kaito H, Nakanishi K et al (2009) In vivo and in vitro splicing assay of SLC12A1 in an antenatal salt-losing tubulopathy patient with an intronic mutation. Hum Genet 126:533–538

    Article  PubMed  CAS  Google Scholar 

  80. Niu DM, Hsu JH, Chong KW, Huang CH, Lu YH, Kao CH, Yu HC, Lo MY, Jap TS (2009) Six new mutations of the thyroglobulin gene discovered in taiwanese children presenting with thyroid dyshormonogenesis. J Clin Endocrinol Metab 94:5045–5052

    Article  PubMed  CAS  Google Scholar 

  81. Martoni E, Urciuolo A, Sabatelli P, Fabris M, Bovolenta M, Neri M, Grumati P, D’Amico A, Pane M, Mercuri E et al (2009) Identification and characterization of novel collagen VI non-canonical splicing mutations causing Ullrich congenital muscular dystrophy. Hum Mutat 30:E662–E672

    Article  PubMed  Google Scholar 

  82. Kanda K, Nozu K, Yokoyama N, Morioka I, Miwa A, Hashimura Y, Kaito H, Iijima K, Matsuo M (2009) Autosomal dominant pseudohypoaldosteronism type 1 with a novel splice site mutation in MR gene. BMC Nephrol 10:37

    Article  PubMed  Google Scholar 

  83. Jelani M, Salman Chishti M, Ahmad W (2009) A novel splice-site mutation in the CDH3 gene in hypotrichosis with juvenile macular dystrophy. Clin Exp Dermatol 34:68–73

    Article  PubMed  CAS  Google Scholar 

  84. Holla OL, Nakken S, Mattingsdal M, Ranheim T, Berge KE, Defesche JC, Leren TP (2009) Effects of intronic mutations in the LDLR gene on pre-mRNA splicing: comparison of wet-lab and bioinformatics analyses. Mol Genet Metab 96:245–252

    Article  PubMed  CAS  Google Scholar 

  85. Heinritz W, Huffmeier U, Strenge S, Miterski B, Zweier C, Leinung S, Bohring A, Mitulla B, Peters U, Froster UG (2009) New mutations of EXT1 and EXT2 genes in German patients with Multiple Osteochondromas. Ann Hum Genet 73:283–291

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Béroud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Desmet, F.O., Béroud, C. (2012). Bioinformatics and Mutations Leading to Exon Skipping. In: Aartsma-Rus, A. (eds) Exon Skipping. Methods in Molecular Biology, vol 867. Humana Press. https://doi.org/10.1007/978-1-61779-767-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-767-5_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-766-8

  • Online ISBN: 978-1-61779-767-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics