Skip to main content

Antisense-Mediated Exon-Skipping to Induce Gene Knockdown

  • Protocol
  • First Online:
Exon Skipping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 867))

Abstract

Exon-skipping antisense oligonucleotides (ASOs) can be used to knockdown the expression of an undesired gene or specific gene isoform. This chapter discusses the potential therapeutic applications of the technique and provides a sample protocol for inducing exon-skipping in Apolipoprotein B in vitro, as well as a protocol for quantifying exon-skipping using real-time PCR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maquat L, Carmichael G (2001) Quality control of mRNA function. Cell 104:173–176

    Article  PubMed  CAS  Google Scholar 

  2. McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747

    Article  PubMed  CAS  Google Scholar 

  3. Grunweller A, Wyszko E, Bieber B, Jahnel R, Erdmann VA, Kurreck J (2003) Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2′-O-methyl RNA, phosphorothioates and small interfering RNA. Nucleic Acids Res 31:3185–3193

    Article  PubMed  Google Scholar 

  4. Summerton J (1999) Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta 1489:141–158

    PubMed  CAS  Google Scholar 

  5. Draper BW, Morcos PA, Kimmel CB (2001) Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis 30:154–156

    Article  PubMed  CAS  Google Scholar 

  6. Seeley M, Huang W, Chen Z, Wolff WO, Lin X, Xu X (2007) Depletion of zebrafish titin reduces cardiac contractility by disrupting the assembly of Z-discs and A-bands. Circ Res 100:238–245

    Article  PubMed  CAS  Google Scholar 

  7. Madsen EC, Morcos PA, Mendelsohn BA, Gitlin JD (2008) In vivo correction of a Menkes disease model using antisense oligonucleotides. Proc Natl Acad Sci USA 105:3909–3914

    Article  PubMed  CAS  Google Scholar 

  8. Gore AV, Maegawa S, Cheong A, Gilligan PC, Weinberg ES, Sampath K et al (2005) The zebrafish dorsal axis is apparent at the four-cell stage. Nature 438:1030–1035

    Article  PubMed  CAS  Google Scholar 

  9. Mulamba GB, Hu A, Azad RF, Anderson KP, Coen DM (1998) Human cytomegalovirus mutant with sequence-dependent resistance to the phosphorothioate oligonucleotide fomivirsen (ISIS 2922). Antimicrob Agents Chemother 42:971–973

    PubMed  CAS  Google Scholar 

  10. Crooke S (2004) Progress in antisense technology. Annu Rev Med 55:61–95

    Article  PubMed  CAS  Google Scholar 

  11. Rayburn ER, Zhang R (2008) Antisense, RNAi, and gene silencing strategies for therapy: mission possible or impossible? Drug Discov Today 13:513–521

    Article  PubMed  CAS  Google Scholar 

  12. Chester A, Scott J, Anant S, Navaratnam R (2000) RNA editing: cytidine to uridine conversion in apolipoprotein B mRNA. Biochim Biophys Acta 1494:1–13

    PubMed  CAS  Google Scholar 

  13. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M et al (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178

    Article  PubMed  CAS  Google Scholar 

  14. Zimmermann T, Lee A, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN et al (2006) RNAi-mediated gene silencing in non-human primates. Nature 441:111–114

    Article  PubMed  CAS  Google Scholar 

  15. Raal FJ, Santos RD, Blom DJ, Marais AD, Charng MJ, Cromwell WC et al (2010) Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 375:998–1006

    Article  PubMed  CAS  Google Scholar 

  16. Khoo B, Roca X, Chew SL, Krainer AR (2007) Antisense oligonucleotide-induced alternative splicing of the APOB mRNA generates a novel isoform of APOB. BMC Mol Biol 8:3

    Article  PubMed  Google Scholar 

  17. Glueck CJ, Gartside PS, Mellies MJ, Steiner PM (1977) Familial hypobeta-lipoproteinemia: studies in 13 kindreds. Trans Assoc Am Phys 90:184–203

    PubMed  CAS  Google Scholar 

  18. Kahn JA, Glueck CJ (1978) Familial hypobetalipoproteinemia. Absence of atherosclerosis in a postmortem study. JAMA 240:47–48

    Article  PubMed  CAS  Google Scholar 

  19. Krul E, Tang J, Kettler T, Clouse RE, Schonfeld G (1992) Lengths of truncated forms of apolipoprotein B (apoB) determine their intestinal production. Biochem Biophys Res Commun 189:1069–1076

    Article  PubMed  CAS  Google Scholar 

  20. Eisenhauer EA (2001) From the molecule to the clinic – inhibiting HER2 to treat breast cancer. N Engl J Med 344:841–842

    Article  PubMed  CAS  Google Scholar 

  21. Wan J, Sazani P, Kole R (2009) Modification of HER2 pre-mRNA alternative splicing and its effects on breast cancer cells. Int J Cancer 124:772–777

    Article  PubMed  CAS  Google Scholar 

  22. Tyson-Capper AJ, Europe-Finner GN (2006) Novel targeting of cyclooxygenase-2 (COX-2) pre-mRNA using antisense morpholino oligonucleotides directed to the 3′ acceptor and 5′ donor splice sites of exon 4: suppression of COX-2 activity in human amnion-derived WISH and myometrial cells. Mol Pharmacol 69:796–804

    PubMed  CAS  Google Scholar 

  23. Towers GJ (2007) The control of viral infection by tripartite motif proteins and cyclophilin A. Retrovirology 4:40

    Article  PubMed  Google Scholar 

  24. Ittig D, Liu S, Renneberg D, Schümperli D, Leumann CJ (2004) Nuclear antisense effects in cyclophilin A pre-mRNA splicing by oligonucleotides: a comparison of tricyclo-DNA with LNA. Nucleic Acids Res 32:346–353

    Article  PubMed  CAS  Google Scholar 

  25. Roche Applied Science (2010) Universal ProbeLibrary Assay Design Center. Roche Applied Science. https://www.roche-applied-science.com/sis/rtpcr/upl/index.jsp?id=uplct_030000. Accessed 26 Aug 2010

  26. Jarvis R (2005) Optimizing siRNA transfection for RNAi. Ambion TechNotes 12:18–20

    Google Scholar 

  27. Nanodrop Spectrophotometers (2009) NanoDrop Spectrophotometers: 260/280 and 260/230 Ratios. Nanodrop.com. http://www.nanodrop.com/Library/T009-NanoDrop%201000-&-NanoDrop%208000-Nucleic-Acid-Purity-Ratios.pdf. Accessed 24 Aug 2010

  28. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  PubMed  CAS  Google Scholar 

  29. Vandenbroucke II, Vandesompele J, Paepe AD, Messiaen L (2001) Quantification of splice variants using real-time PCR. Nucleic Acids Res 29:E68-8

    Article  PubMed  Google Scholar 

  30. Chang Bioscience (2010) DNA/RNA/Protein/Chemical Molecular Weight Calculator. http://www.changbioscience.com/genetics/mw.html. Accessed 26 Aug 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Khoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Disterer, P., Khoo, B. (2012). Antisense-Mediated Exon-Skipping to Induce Gene Knockdown. In: Aartsma-Rus, A. (eds) Exon Skipping. Methods in Molecular Biology, vol 867. Humana Press. https://doi.org/10.1007/978-1-61779-767-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-767-5_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-766-8

  • Online ISBN: 978-1-61779-767-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics