Skip to main content

Computer-Designed Nano-Fibrous Scaffolds

  • Protocol
  • First Online:
Computer-Aided Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 868))

Abstract

Nano-fibrous scaffolding mimics aspects of the extracellular matrix to improve cell function and tissue formation. Although several methods exist to fabricate nano-fibrous scaffolds, the combination of phase separation with reverse solid freeform fabrication (SFF) allows for scaffolds with features at three different orders of magnitude to be formed, which is not easily achieved with other nano-fiber fabrication methods. This technique allows for the external shape and internal pore structure to be precisely controlled in an easily repeatable manner, while the nano-fibrous wall architecture facilitates cellular attachment, proliferation, and differentiation of the cells. In this chapter, we examine the fabrication of computer-designed nano-fibrous scaffolds utilizing thermally induced phase separation and reverse SFF, and the benefits of such scaffolds over more traditional tissue engineering scaffolds on cellular function and tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langer R, Vacanti J (1993) Tissue engineering. Science 260:920–926

    Article  CAS  Google Scholar 

  2. Ma PX (2008) Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 60:184–189

    Article  CAS  Google Scholar 

  3. Kadler K (2004) Matrix loading: assembly of extracellular matrix collagen fibrils during embryogenesis. Birth Defects Res C Embryo Today 72:1–11

    Article  CAS  Google Scholar 

  4. Nam YS, Park TG (1999) Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res 47:8–17

    Article  CAS  Google Scholar 

  5. Lee SH, Kim BS, Kim SH, Kang SW, Kim YH (2004) Thermally produced biodegradable scaffolds for cartilage tissue engineering. Macromol Biosci 4:802–810

    Article  CAS  Google Scholar 

  6. Zhang RY, Ma PX (1999) Poly(alpha-hydroxyl acids) hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res 44:446–455

    Article  CAS  Google Scholar 

  7. Ma PX, Zhang RY, Xiao G, Franceschi R (2001) Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds. J Biomed Mater Res 54:284–293

    Article  CAS  Google Scholar 

  8. Ma PX, Zhang RY (2001) Microtubular architecture of biodegradable polymer scaffolds. J Biomed Mater Res 56:469–477

    Article  CAS  Google Scholar 

  9. Ma PX, Zhang RY (1999) Porous poly(l-lactic acid)/apatite composites created by biomimetic process. J Biomed Mater Res 45:285–293

    Article  Google Scholar 

  10. Ma PX, Zhang RY (1999) Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res 46:60–72

    Article  CAS  Google Scholar 

  11. Chen VJ, Ma PX (2004) Nano-fibrous poly(l-lactic acid) scaffolds with interconnected spherical macropores. Biomaterials 25:2065–2073

    Article  CAS  Google Scholar 

  12. Chen VJ, Smith LA, Ma PX (2006) Bone regeneration on computer-designed nano-fibrous scaffolds. Biomaterials 27:3973–3979

    Article  CAS  Google Scholar 

  13. Liu XH, Smith LA, Wei G, Won YJ, Ma PX (2005) Surface engineering of nano-fibrous poly(l-lactic acid) scaffolds via self-assembly technique for bone tissue engineering. J Biomed Nanotechnol 1:54–60

    Article  CAS  Google Scholar 

  14. Liu XH, Won YJ, Ma PX (2005) Surface modification of interconnected porous scaffolds. J Biomed Mater Res A 74A:84–91

    Article  CAS  Google Scholar 

  15. Liu XH, Won YJ, Ma PX (2006) Porogen-induced surface modification of nano-fibrous poly(l-lactic acid) scaffolds for tissue engineering. Biomaterials 27:3980–3987

    Article  CAS  Google Scholar 

  16. Wei G, Ma PX (2006) Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres. J Biomed Mater Res A 78:306–315

    Google Scholar 

  17. Wei G, Jin Q, Giannobile W, Ma PX (2007) The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials 28:2087–2096

    Article  CAS  Google Scholar 

  18. Jin Q, Wei G, Lin Z et al (2008) Nanofibrous scaffolds incorporating PDGF-BB microspheres induce chemokine expression and tissue neogenesis in vivo. PLoS One 3:e1729

    Article  Google Scholar 

  19. Lee M, Dunn J, Wu B (2005) Scaffold fabrication by indirect three-dimensional printing. Biomaterials 26:4281–4289

    Article  CAS  Google Scholar 

  20. Lin C, Kikuchi N, Hollister S (2004) A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J Biomech 37:623–636

    Article  Google Scholar 

  21. Ma PX, Langer R (1999) Fabrication of biodegradable polymer foams for cell transplantation and tissue engineering. In: Morgan J, Yarmush M (eds) Tissue engineering methods and protocols. Humana Press Inc, Totowa, NJ, pp 47–56

    Google Scholar 

  22. Zhang RY, Ma PX (2000) Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures. J Biomed Mater Res 52:430–438

    Article  CAS  Google Scholar 

  23. Taboas J, Maddox R, Krebsbach P, Hollister S (2003) Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials 24:181–194

    Article  CAS  Google Scholar 

  24. Mattioli-Belmonte M, Vozzi G, Kyriakidou K et al (2008) Rapid-prototyped and salt-leached PLGA scaffolds condition cell morpho-functional behavior. J Biomed Mater Res A 85:466–476

    CAS  Google Scholar 

  25. Smith LA, Beck J, Ma PX (2007) Fabrication and tissue formation with nano-fibrous scaffolds. In: Kumar C (ed) Nanotechnologies for tissue, cell and organ engineering. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  26. Woo KM, Jun JH, Chen VJ et al (2007) Nano-fibrous scaffolding promotes osteoblasts differentiation and biomeneralization. Biomaterials 28:335–343

    Article  CAS  Google Scholar 

  27. Woo KM, Chen VJ, Ma PX (2003) Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A 67:531–537

    Article  Google Scholar 

  28. Smith LA, Liu X, Hu J, Wang P, Ma P (2009) Enhancing the osteogenic differentiation of mouse embryonic stem cells by nanofibers. Tissue Eng 15:1855–1864

    Article  CAS  Google Scholar 

  29. Hu J, Liu X, Ma PX (2008) Induction of osteoblast differentiation phenotype on poly(l-lactic acid) nanofibrous matrix. Biomaterials 29:3815–3821

    Article  CAS  Google Scholar 

  30. Schindler M, Ahmed I, Kamal J et al (2005) A synthetic nanofibrillar matrix promotes in vivolike organization and morphogenesis for cells in culture. Biomaterials 26:5624–5631

    Article  CAS  Google Scholar 

  31. Shih YV, Chen CN, Tsai SW, Wang YJ, Lee OK (2006) Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Stem Cells 24:2391–2397

    Article  CAS  Google Scholar 

  32. Nur-E-Kamal A, Ahmed I, Kamal J, Schindler M, Meiners S (2005) Three dimensional nanofibrillar surfaces induces the activation of Rac. Biochem Biophys Res Commun 331:428–434

    Article  CAS  Google Scholar 

  33. Li MY, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI (2005) Electrospun protein fibers as matrices for tissue engineering. Biomaterials 26:5999–6008

    Article  CAS  Google Scholar 

  34. Shin M, Yoshimoto H, Vacanti JP (2004) In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng 10:33–41

    Article  CAS  Google Scholar 

  35. Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077–2082

    Article  CAS  Google Scholar 

  36. Woo KM, Chen VJ, Jung H et al (2009) Comparative evaluation of nano-fibrous scaffolding for bone regeneration in critical sized calvarial defects. Tissue Eng 15:2155–2162

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter X. Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Smith, L.A., Ma, P.X. (2012). Computer-Designed Nano-Fibrous Scaffolds. In: Liebschner, M. (eds) Computer-Aided Tissue Engineering. Methods in Molecular Biology, vol 868. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-764-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-764-4_8

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-763-7

  • Online ISBN: 978-1-61779-764-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics