Skip to main content

Computer-Aided Approach for Customized Cell-Based Defect Reconstruction

  • Protocol
  • First Online:
Computer-Aided Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 868))

Abstract

Computer-aided technologies like computer-aided design (CAD), computer-aided manufacturing (CAM), and a lot of other features like finite element method (FEM) have been recently employed for use in medical ways like in extracorporeal bone tissue engineering strategies. Aim of this pilot experimental study was to test whether autologous osteoblast-like cells cultured in vitro on individualized scaffolds can be used to support bone regeneration in a clinical environment.

Mandibular bone defects were surgically introduced into the mandibles of Göttinger minipigs and the scaffold of the defect site was modelled by CAD/CAM techniques. From the minipigs harvested autologous bone cells from the porcine calvaria were cultivated in bioreactors. The cultured osteoblast-like cells were seeded on polylactic acid/polyglycolic acid (PLA/PGA) copolymer scaffolds being generated by rapid prototyping. The bone defects were then reconstructed by implanting these tissue-constructs into bone defects.

The postoperative computerized topographic scans as well as the intraoperative sites demonstrated the accurate fit in the defect sites. The individual created, implanted scaffold constructs enriched with the porcine osteoblast-like cells were well tolerated and appeared to support bone formation, as revealed by immunohistochemical and histological analyses.

The results of this investigations indicated that the in vitro expanded osteoblast-like cells spread on a resorbable individualized, computer-aided fabricated scaffold is capable of promoting the repair of bone tissue defects in vivo. The shown results warrant further attempts to combine computer modelling and tissue engineering for use in different ways in bone reconstructive surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alsberg E, Hill EE, Mooney DJ (2001) Craniofacial tissue engineering. Crit Rev Oral Biol Med 12(1):64–75

    Article  CAS  Google Scholar 

  2. Liu XZ, Lv PJ, Wang Y (2008) J Peking Univ Health Sci 40(6):654–657

    Google Scholar 

  3. Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22(7):354–362

    Article  CAS  Google Scholar 

  4. Meyer U, Joos U, Wiesmann HP (2004) Biological and biophysical principles in extracorporal bone tissue engineering. Part I. Int J Oral Maxillofac Surg 33(4):325–332

    Article  CAS  Google Scholar 

  5. Goldstein SA (2002) Tissue engineering: functional assessment and clinical outcome. Ann N Y Acad Sci 961:183–192

    Article  CAS  Google Scholar 

  6. Sun W, Lal P (2002) Recent development on computer aided tissue engineering-a review. Comput Methods Programs Biomed 67(2):85–103

    Article  Google Scholar 

  7. Breitbart AS, Grande DA, Kessler R, Ryaby JT, Fitzsimmons R, Grant RT (1998) Tissue engineered bone repair of calvarial defects using cultured periosteal cells. Plast Reconst Surg 101:567–574

    Article  CAS  Google Scholar 

  8. Meyer U, Meyer T, Jones DB (1998) Attachment kinetics, proliferation rates and vinculin assembly of bovine osteoblasts cultured on different pre-coated artificial substrates. J Mater Sci Mater Med 9(6):301–307

    Article  CAS  Google Scholar 

  9. Meyer U, Büchter A, Hohoff A, Stoffels E, Szuwart T, Runte CH, Dirksen D, Wiesmann HP (2005) Image-based extracorporeal tissue engineering of individualized bone constructs. Int J Oral Maxillofac Implants 20(6):882–890

    Google Scholar 

  10. Owen M (1988) Marrow stromal stem cells. J Cell Sci Suppl 10:63–76

    CAS  Google Scholar 

  11. Gundle R, Joyner CJ, Triffitt JT (1995) Human bone tissue formation in diffusion chamber culture in vivo by bone-derived cells and marrow stromal fibroblastic cells. Bone 16(6):597–601

    Article  CAS  Google Scholar 

  12. Krebsbach PH, Kuznetsov SA, Bianco P, Robey PG (1999) Bone marrow stromal cells: characterization and clinical application. Crit Rev Oral Biol Med 10(2):165–181

    Article  CAS  Google Scholar 

  13. Kuznetsov SA, Krebsbach PH, Satomura K, Kerr J, Riminucci M, Benayahu D, Robey PG (1997) Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res 12(9):1335–1347

    Article  CAS  Google Scholar 

  14. Bos RR, Rozema FR, Boering G, Nijenhuis AJ, Pennings AJ, Verwey AB, Nieuwenhuis P, Jansen HW (1991) Degradation of and tissue reaction to biodegradable poly(l-lactide) for use as internal fixation of fractures: a study in rats. Biomaterials 12(1):32–36

    Article  CAS  Google Scholar 

  15. Majola A, Vainionpaa S, Vihtonen K, Mero M, Vasenius J, Tormala P, Rokkanen P (1991) Absorption, biocompatibility, and fixation properties of polylactic acid in bone tissue: an experimental study in rats. Clin Orthop Relat Res 268:260–269

    Google Scholar 

  16. VanSliedregt A, Radder AM, de Groot K, Van Blietierswijk CA (1992) In vitro biocompatibility testing of polylactides. Part 1. Proliferation of different cell types. J Mater Sci Mater Med 3:365–372

    Article  CAS  Google Scholar 

  17. Ishaug SL, Yaszemski MJ, Bizios R, Mikos AG (1994) Osteoblast function on synthetic biodegradable polymers. J Biomed Mater Res 28(12):1445–1453

    Article  CAS  Google Scholar 

  18. Otto TE, Patka P, Haarman HJTHM, Klein CPAT, Vriesde R (1994) Intramedullary bone formation after polylactic acid wire implantation. J Mater Sci Mater Med 5:407–412

    Article  CAS  Google Scholar 

  19. Wiesmann HP, Nazer N, Klatt C, Szuwart T, Meyer U (2003) Bone tissue engineering by primary osteoblast-like cells in a monolayer system and 3-dimensional collagen gel. J Oral Maxillofac Surg 61(12):1455–1462

    Article  Google Scholar 

  20. Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7(6):679–689

    Article  CAS  Google Scholar 

  21. Landers R, Hubner U, Schmelzeisen R, Mulhaupt R (2002) Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23(23):4437–4447

    Article  CAS  Google Scholar 

  22. Runte C, Dirksen D, Delere H, Thomas C, Runte B, Meyer U, von Bally G, Bollmann F (2002) Optical data acquisition for computer-assisted design of facial prostheses. Int J Prosthodont 15(2):129–132

    Google Scholar 

  23. Widmer MS, Mikos AG (1998) Fabrication of biodegradable polymer scaffolds for tissue engineering. In: Patrick CW Jr, Mikos AG, McIntire LV (eds) Frontiers in tissue engineering. Elsevier, New York, NY, pp 107–117

    Chapter  Google Scholar 

  24. Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC (2001) Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 55(2):203–216

    Article  CAS  Google Scholar 

  25. Eufinger H, Wehmoller M (2002) Microsurgical tissue transfer and individual computer-aided designed and manufactured prefabricated titanium implants for complex craniofacial reconstruction. Scand J Plast Reconstr Surg Hand Surg 36(6):326–331

    Article  Google Scholar 

  26. Eufinger H, Saylor B (2001) Computer-assisted prefabrication of individual craniofacial implants. AORN J 74(5):648–654, quiz 655–656, 658–662

    Article  CAS  Google Scholar 

  27. Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6(2):125–134

    Article  CAS  Google Scholar 

  28. Piersma AH, Ploemacher RE, Brockbank KG (1983) Transplantation of bone marrow fibroblastoid stromal cells in mice via the intravenous route. Br J Haematol 54(2):285–290

    Article  CAS  Google Scholar 

  29. Schliephake H, Knebel JW, Aufderheide M, Tauscher M (2001) Use of cultivated osteoprogenitor cells to increase bone formation in segmental mandibular defects: an experimental pilot study in sheep. Int J Oral Maxillofac Surg 30(6):531–537

    Article  CAS  Google Scholar 

  30. Schmelzeisen R, Schimming R, Sittinger M (2003) Making bone: implant insertion into tissue-engineered bone for maxillary sinus floor augmentation-a preliminary report. J Craniomaxillofac Surg 31(1):34–39

    Article  Google Scholar 

  31. Bruder SP, Fox BS (1999) Tissue engineering of bone. Cell based strategies. Clin Orthop Relat Res  (367 Suppl):S68–S83

    Article  Google Scholar 

  32. Hunt TR, Schwappach JR, Anderson HC (1996) Healing of a segmental defect in the rat femur with use of an extract from a cultured human osteosarcoma cell-line (Saos-2). A preliminary report. J Bone Joint Surg Am 78(1):41–48

    CAS  Google Scholar 

  33. Wiesmann HP, Joos U, Meyer U (2004) Biological and biophysical principles in extracorporeal bone tissue engineering. Part II. Int J Oral Maxillofac Surg 33(6):523–530

    Article  CAS  Google Scholar 

  34. Meyer U, Meyer T, Handschel J, Wiesmann HP (2009) Fundamentals of tissue engineering and regenerative medicine. Springer, Heidelberg, New York

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Meyer, U., Neunzehn, J., Wiesmann, H.P. (2012). Computer-Aided Approach for Customized Cell-Based Defect Reconstruction. In: Liebschner, M. (eds) Computer-Aided Tissue Engineering. Methods in Molecular Biology, vol 868. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-764-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-764-4_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-763-7

  • Online ISBN: 978-1-61779-764-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics