Skip to main content

Laser Sintering for the Fabrication of Tissue Engineering Scaffolds

  • Protocol
  • First Online:
Book cover Computer-Aided Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 868))

Abstract

Laser sintering (LS) utilises a laser to sinter powder particles. A volumetric model is sliced and processed cross section by cross section to create a physical part. In theory, all powdered materials are suitable for sintering; however, only few have been tested successfully. For tissue engineering (TE) applications of this rapid prototyping technology it is an advantage that no toxic solvents or binders are necessary. This chapter reviews the direct and indirect use of LS to fabricate scaffolds for TE from single and multiphase materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bibb R (2006) Medical modelling. Woodhead Publishing, Cambridge, p 297

    Google Scholar 

  2. Huang H et al (2007) Avidin-biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network. Biomaterials 28(26):3815–3823

    Article  CAS  Google Scholar 

  3. Lohfeld S et al (2006) Manufacturing of small featured PCL scaffolds for bone tissue engineering using selective laser sintering. J Biomech 39(Suppl 1):S216–S212

    Article  Google Scholar 

  4. Smith MH et al (2007) Computed tomography-based tissue-engineered scaffolds in craniomaxillofacial surgery. Int J Med Robot Comput Assist Surg 3(3):207–216

    Article  CAS  Google Scholar 

  5. Williams JM et al (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827

    Article  CAS  Google Scholar 

  6. Wiria FE et al (2007) Poly-[epsilon]-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater 3(1):1–12

    Article  CAS  Google Scholar 

  7. Tan KH et al (2003) Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials 24(18):3115–3123

    Article  CAS  Google Scholar 

  8. Antonov EN et al (2005) Three-dimensional bioactive and biodegradable scaffolds fabricated by surface-selective laser sintering. Adv Mater 17(3):327–330

    Article  CAS  Google Scholar 

  9. Simpson RL et al (2008) Development of a 95/5 poly(l-lactide-co-glycolide)/hydroxylapatite and beta-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. J Biomed Mater Res B Appl Biomater 84B(1):17–25

    Article  CAS  Google Scholar 

  10. Popov VK et al (2007) Laser technologies for fabricating individual implants and matrices for tissue engineering. J Optic Technol 74(9):636–640

    Article  CAS  Google Scholar 

  11. Goodridge RD, Dalgarno KW, Wood DJ (2006) Indirect selective laser sintering of an apatite-mullite glass-ceramic for potential use in bone replacement applications. Proc Inst Mech Eng H J Eng Med 220(1):57–68

    Google Scholar 

  12. Lin L et al (2007) Design and fabrication of bone tissue engineering scaffolds via rapid prototyping and CAD. J Rare Earths 25(Suppl 2):379–383

    Google Scholar 

  13. Hao L et al (2006) Selective laser sintering of hydroxyapatite reinforced polyethylene composites for bioactive implants and tissue scaffold development. Proc Inst Mech Eng H J Eng Med 220(4):521–531

    Article  CAS  Google Scholar 

  14. Chua CK et al (2004) Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects. J Mater Sci Mater Med 15(10):1113–1121

    Article  CAS  Google Scholar 

  15. Lee G, Barlow J (1993) Selective laser sintering of bioceramic materials for implants. In: Proceedings of the solid freeform fabrication symposium, Austin, TX, 1993

    Google Scholar 

  16. Lee G et al (1996) Biocompatibility of SLS-formed calcium phosphate implants. In: Proceedings of the solid freeform fabrication symposium, Austin, TX, 1996

    Google Scholar 

  17. Savalani M et al (2007) Fabrication of porous bioactive structures using the selective laser sintering technique. Proc Inst Mech Eng H J Eng Med 221(8):873–886

    Article  CAS  Google Scholar 

  18. Zhang Y et al (2008) Characterization and dynamic mechanical analysis of selective laser sintered hydroxyapatite-filled polymeric composites. J Biomed Mater Res A 86A(3):607–616

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter E. McHugh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lohfeld, S., McHugh, P.E. (2012). Laser Sintering for the Fabrication of Tissue Engineering Scaffolds. In: Liebschner, M. (eds) Computer-Aided Tissue Engineering. Methods in Molecular Biology, vol 868. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-764-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-764-4_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-763-7

  • Online ISBN: 978-1-61779-764-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics