Skip to main content

Structural and Vascular Analysis of Tissue Engineering Scaffolds, Part 1: Numerical Fluid Analysis

  • Protocol
  • First Online:
Book cover Computer-Aided Tissue Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 868))

Abstract

Rapid prototyping technologies were recently introduced in the medical field, being particularly viable to produce porous scaffolds for tissue engineering. These scaffolds should be biocompatible, biodegradable, with appropriate porosity, pore structure, and pore distribution on top of presenting both surface and structural compatibility. This chapter presents the state-of-the-art in tissue engineering and scaffold design using numerical fluid analysis for optimal vascular design. The vascularization of scaffolds is an important aspect due to its influence regarding the normal flow of biofluids within the human body. This computational tool also allows to design either a scaffold offering less resistance to the normal flow of biofluids or reducing the possibility for blood coagulation through forcing the flow toward a specific direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Risbud M (2001) Tissue engineering: implications in the treatment of organ and tissue defects. Biogerontology 2:117–125

    Article  CAS  Google Scholar 

  2. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  Google Scholar 

  3. Bártolo PJ, Chua CK, Almeida HA, Chou SM, Lim ASC (2009) Biomanufacturing for tissue engineering: present and future trends. Virt Phys Prototyping 4(4):203–216

    Article  Google Scholar 

  4. Bártolo PJ, Almeida H, Laoui T (2009) Rapid prototyping and manufacturing for tissue engineering scaffolds. Int J Comput Appl Technol 36(1):1–9

    Article  Google Scholar 

  5. Bártolo PJ, Almeida HA, Rezende RA, Laoui T, Bidanda B (2008) Advanced processes to fabricate scaffolds for tissue engineering. In: Bidanda B, Bártolo PJ (eds) Virtual prototyping and bio-manufacturing in medical applications. Springer, New York

    Google Scholar 

  6. Vozzi G, Flaim C, Ahluwalia A, Bhatia S (2003) Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 24:2533–2540

    Article  CAS  Google Scholar 

  7. Gibson LJ (2005) Biomechanics of cellular solids. J Biomech 38:377–399

    Article  Google Scholar 

  8. Tan KH, Chua CK, Leong KF, Cheah CM, Gui WS, Tan WS, Wiria FE (2005) Selective laser sintering of biocompatible polymers for applications in tissue engineering. BioMed Mater Eng 15:113–124

    CAS  Google Scholar 

  9. Skalak R, Fox CF (1988) Tissue engineering. Alan R, Liss, New York

    Google Scholar 

  10. Fuchs JR, Nasseri BA, Vacanti JP (2001) Tissue engineering: a 21st century solution to surgical reconstruction. Ann Thorac Surg 72:577–581

    Article  CAS  Google Scholar 

  11. Langer R (1997) Tissue engineering: a new field and its challenges. Pharm Res 14:840–841

    Article  CAS  Google Scholar 

  12. Marler JJ, Upton J, Langer R, Vacanti JP (1998) Transplantation of cells in matrices for tissue regeneration. Adv Drug Del Rev 33:165–182

    Article  CAS  Google Scholar 

  13. Gross KA, Rodríguez-Lorenzo LM (2004) Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering. Biomaterials 25:4955–4962

    Article  CAS  Google Scholar 

  14. Kim BS, Mooney DJ (2001) Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol 16:224–230

    Article  Google Scholar 

  15. Tan PS, Teoh SH (2007) Effect of stiffness of polycaprolactone (PCL) membrane on cell proliferation. Mater Sci Eng C 27:304–308

    Article  CAS  Google Scholar 

  16. Kreke MR, Huckle WR, Goldstein AS (2005) Fluid flow stimulates expression of osteopontin and bone sialoprotein by bone marrow stromal cells in a temporally dependent manner. Bone 36:1047–1055

    Article  CAS  Google Scholar 

  17. Kreeger PK, Shea LD (2002) Biomimetic materials and design: biointerfacial strategies, tissue engineering and targeted drug delivery. In: Dillow AK, Lowman AM (eds) Scaffolds for directing cellular responses and tissue formation in biomimetic materials and design. Marcel Dekker, Inc, New York, pp 283’309

    Google Scholar 

  18. Leong KF, Chua CK, Sudarmadjia N, Yeong WY (2008) Engineering functionally graded tissue engineering scaffolds. J Mech Behav Biomed Mater 1:140–152

    Article  CAS  Google Scholar 

  19. Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7:30–40

    Article  CAS  Google Scholar 

  20. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543

    Article  CAS  Google Scholar 

  21. Mikos AG, Temenoff JS (2000) Formation of highly porous biodegradable scaffolds for tissue engineering. Electron J Biotechnol 3:114–119

    Article  Google Scholar 

  22. Kim TK, Sharma B, Williams CG, Ruffner MA, Malik A, McFarland EG, Elisseeff JH (2003) Experimental model for cartilage tissue engineering to regenerate the zonal organization of articular cartilage. Osteoarthr Cartil 11:653–664

    Article  Google Scholar 

  23. Sun T, Norton D, Ryan AJ, MacNeil S, Haycock JW (2007) Investigation of fibroblast and keratinocyte cellscaffold interactions using a novel 3D cell culture system. J Mater Sci Mater Med 18:321–328

    Article  CAS  Google Scholar 

  24. Chong AKS, Chang J (2006) Tissue engineering for the hand surgeon: a clinical perspective. J Hand Surg 31A:349–358

    Google Scholar 

  25. Beckstead BL, Pan S, BrattLeal AM, Ratner BD, Giachelli CM, Bhrany AD (2005) Esophageal epithelial cell interaction with synthetic and natural scaffolds for tissue engineering. Biomaterials 26:6217–6228

    Article  CAS  Google Scholar 

  26. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491

    Article  CAS  Google Scholar 

  27. Miot S, Woodfield T, Daniels AU, Suetterlin R, Peterschmitt I, Heberer M, Blitterswijk CAv, Riesle J, Martin I (2005) Effects of scaffold composition and architecture on human nasal chondrocyte redifferentiation and cartilaginous matrix deposition. Biomaterials 26:2479–2489

    Article  CAS  Google Scholar 

  28. Woodfield TBF, Van Blitterswijk CA, Riesle J, De Wijn J, Sims TJ, Hollander AP (2005) Polymer scaffolds fabricated with poresize gradients as a model for studying the zonal organization within tissue engineered cartilage constructs. Tissue Eng 11:1297–1311

    Article  CAS  Google Scholar 

  29. Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22:80–86

    Article  CAS  Google Scholar 

  30. Sun W, Darling A, Starly B, Nam J (2004) Review – computer aided tissue engineering: overview, scope and challenges. Biotechnol Appl Biochem 39:29–47

    Article  CAS  Google Scholar 

  31. Taguchi T, Sawabe Y, Kobayashi H, Moriyoshi Y, Kataoka K, Tanaka J (2004) Preparation and characterization of osteochondral scaffold. Mater Sci Eng C 24:881–885

    Article  Google Scholar 

  32. Salem AK, Stevens R, Pearson RG, Davies MC, Tendler SJB, Roberts CJ, Williams PM, Shakesheff KM (2002) Interactions of 3T3 fibroblasts and endothelial cells with defined pore features. J Biomed Mater Res 61:212–217

    Article  CAS  Google Scholar 

  33. Sherwood JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, Griffith LG, Landeen LK, Ratcliffe A (2002) A threedimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23:4739–4751

    Article  CAS  Google Scholar 

  34. Freyman TM, Yannas IV, Gibson LJ (2001) Cellular materials as porous scaffolds for tissue engineering. Progress in Mate Sci 46:273–282

    Article  CAS  Google Scholar 

  35. Zeltinger J, Sherwood JK, Graham DA, Müeller R, Griffith LG (2001) Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng 7:557–572

    Article  CAS  Google Scholar 

  36. Nehrer S, Breinan HA, Ramappa A, Young G, Shortkroff S, Louie LK, Sledge CB, Yannas IV, Spector M (1997) Matrix collagen type and pore size influence behaviour of seeded canine chondrocytes. Biomaterials 18:769–776

    Article  CAS  Google Scholar 

  37. Whang K, Thomas CH, Healy KE, Nuber G (1995) A novel method to fabricate bioabsorbable scaffolds. Polymer 36:837–842

    Article  CAS  Google Scholar 

  38. Wei G, Jin Q, Giannobile WV, Ma PX (2007) The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials 28:2087–2096

    Article  CAS  Google Scholar 

  39. Nathan C, Sporn M (1991) Cytokines in context. J Cell Biol 113:981–986

    Article  CAS  Google Scholar 

  40. Bignon A, Chouteau J, Chevalier J, Fantozzi G, Carret JP, Chavassieux P, Boivin G, Melin M, Hartmann D (2003) Effect of microand macroporosity of bone substitutes on their mechanical properties and cellular response. J Mater Sci Mater Med 14:1089–1097

    Article  CAS  Google Scholar 

  41. Leong KF, Cheah CM, Chua CK (2003) Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24:2363–2378

    Article  CAS  Google Scholar 

  42. Prendergast PJ & van der Meulen MCH (2001) Mechanics of bone regeneration. In: Cowin SC (ed) Bone mechanics handbook. CRC Press LLC, Boca Raton 32:32.1–32.19

    Google Scholar 

  43. Temenoff JS, Lu L, Mikos AG (2000) Bone-tissue engineering using synthetic biodegradable scaffolds. In: Davies JE (ed) Bone engineering. Toronto, Em Squared Incoporated, 454–461

    Google Scholar 

  44. Mustafa K, Oden A, Wennerberg A, Hultenby K, Arvidson K (2005) The influence of surface topography of ceramic abutments on the attachment and proliferation of human oral fibroblasts. Biomaterials 26:373–381

    Article  CAS  Google Scholar 

  45. Cheng Z, Teoh SH (2004) Surface modification of ultra thin poly (caprolactone) films using acrylic acid and collagen. Biomaterials 25:1991–2001

    Article  CAS  Google Scholar 

  46. Zhao K, Deng Y, Chen GQ (2003) Effects of surface morphology on the biocompatibility of polyhydroxyalkanoates. Biochem Eng J 16:115–123

    Article  CAS  Google Scholar 

  47. Singhvi R, Stephanopoulos G, Wang DIC (1994) Effects of substratum morphology on cell physiology – review. Biotechnol Bioeng 43:764–771

    Article  CAS  Google Scholar 

  48. Hynes RO (1992) Integrins, versatility, modulation, and signalling in cell adhesion. Cell 69:11–25

    Article  CAS  Google Scholar 

  49. Yildirim E, Ayan H, Vasilets V, Fridman A, Guceri S, Sun W (2008) Effect of dielectric barrier discharge plasma on the attachment and proliferation of osteoblasts cultured over poly (e-caprolactone) scaffolds. J Plasma Process Polym 5(1):58–66

    Article  CAS  Google Scholar 

  50. Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7:679–689

    Article  CAS  Google Scholar 

  51. Yeong WY, Chua CK, Leong KF, Chandrasekaran M (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22:643–652

    Article  CAS  Google Scholar 

  52. Bártolo PJ, Chua CK (2008) Editorial: celebrating the 70th anniversary of Professor Yongnian Yan: a life dedicated to science and technology. Virt Phys Prototyping 3(4):189–191

    Article  Google Scholar 

  53. Bártolo PJ (2006) State of the art of solid freeform fabrication for soft and hard tissue engineering. In: Brebbia CA (ed) Design and nature III: comparing design in nature with science and engineering. WIT Press, Wessex Institute of Technology, UK, 233–243

    Google Scholar 

  54. Bártolo PJ, Lagoa R, Mendes A (2003) Rapid prototyping system for tissue engineering. In: Bártolo PJ et al (eds) Proceedings of the international conference on advanced research in virtual and physical prototyping. Leiria, pp 419–426

    Google Scholar 

  55. Gaspar J, Bártolo PJ, Duarte FM (2008) Cure and rheological analysis of reinforced resins for stereolithography. Mater Sci Forum 587/588:563

    Google Scholar 

  56. Bertsch A, Jiguet S, Bernhards P, Renaud P (2003) Microstereolithography: a review. In: Pique A, Holmes AS, Dimos DB (eds) Rapid prototyping technologies. 758:3–15

    Google Scholar 

  57. Cooke MN, Fisher JP, Dean D, Rimnac C, Mikos AG (2002) Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J Biomed Mater Res B Appl Biomater 64B:65–69

    Article  Google Scholar 

  58. Matsuda T, Mizutani M (2002) Liquid acrylate-endcapped poly(ε-caprolactone-cotrimethylene carbonate). II. Computer-aided stereolithographic microarchitectural surface photoconstructs. J Biomed Mater Res 62:395–403

    Article  CAS  Google Scholar 

  59. Chu TMG, Halloran JW, Hollister SJ, Feinberg SE (2001) Hydroxyapatite implants with designed internal architecture. J Mater Sci Mater Med 12:471–478

    Article  CAS  Google Scholar 

  60. Griffith ML, Halloran JW (1996) Freeform fabrication of ceramics via stereolithography. J Am Ceram Soc 79:2601–2608

    Article  CAS  Google Scholar 

  61. Bártolo PJ, Mitchell G (2003) Stereo-thermal-lithography. Rapid Prototyping J 9:150–156

    Article  Google Scholar 

  62. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827

    Article  CAS  Google Scholar 

  63. Woodfield TBF, Malda J, de Wijn J, Péters F, Riesle J, van Blitterswijk CA (2004) Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25:4149–4161

    Article  CAS  Google Scholar 

  64. Mateus AJ, Almeida HA, Ferreira NM, Alves NM, Bártolo PJ, Mota C, Sousa JP (2008) Bioextrusion for tissue engineering applications. In: Bártolo PJ et al (ed) Virtual and rapid manufacturing. Taylor&Francis, London

    Google Scholar 

  65. Landers R, Hubner U, Schmelzeisen R, Mulhaupt R (2002) Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23:4437–4447

    Article  CAS  Google Scholar 

  66. Landers R, Pfister A, Hubner U, John H, Schmelzeisen R, Mulhaupt R (2002) Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J Mater Sci 37:3107–3116

    Article  CAS  Google Scholar 

  67. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21:157–161

    Article  CAS  Google Scholar 

  68. Yan Y, Zhang R, Lin F (2003) Research and applications on bio-manufacturing. In: Bártolo PJ et al (eds) Proceedings of the international conference on advanced research in virtual and physical prototyping. Leiria, pp 23–29

    Google Scholar 

  69. Chang R, Nam J, Sun W (2008) Effects of dispensing pressure and Nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng 14(1):41–48

    Article  CAS  Google Scholar 

  70. Hoque ME, Feng W, Wong YS, Hutmacher DW, Li S, Huang MH, Vert M, Bártolo PJ (2008) Scaffolds designed and fabricated with elastic biomaterials applying cad-cam technique. Tissue Eng A 14:907

    Google Scholar 

  71. Koh Y-H, Jun I-K, Kim H-E (2006) Fabrication of poly(ε-caprolactone)/hydroxyapatite scaffold using rapid direct deposition. Mater Lett 60:184–1187

    Article  Google Scholar 

  72. Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23:1169–1185

    Article  CAS  Google Scholar 

  73. Too MH, Leong KF, Chua CK, Du ZH, Yang SF, Cheah CM, Ho SL (2002) Investigation of 3D nonrandom porous structures by fused deposition modeling. Int J Adv Manuf Technol 19:217–223

    Google Scholar 

  74. Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC (2001) Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modelling. J Biomed Mater Res 55:203–216

    Article  CAS  Google Scholar 

  75. Shor L, Guceri S, Wen X, Gandhi M, Sun W (2007) Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials 28(35):5291–5297

    Article  CAS  Google Scholar 

  76. Wang F, Shor L, Darling A, Khalil S, Güçeri S, Lau A (2004) Precision deposition and characterization of cellular poly-ε-caprolactone tissue scaffolds. Rapid Prototyping J 10:42–49

    Article  Google Scholar 

  77. Ang TH, Sultana FSA, Hutmacher DW, Wong YS, Fuh JYH, Mo XM, Loh HT, Burdet E, Teoh SH (2002) Fabrication of 3D chitosan-hydroxyapatite scaffolds using a robotic dispersing system. Mater Sci Eng C20:35–42

    CAS  Google Scholar 

  78. Seitz H, Rieder W, Irsen S, Leukers B, Tille C (2005) Threedimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 74B:782–788

    Article  CAS  Google Scholar 

  79. Sachlos E, Reis N, Ainsley C, Derby B, Czernuszka JT (2003) Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials 24:1487–1497

    Article  CAS  Google Scholar 

  80. Lam CXF, Mo XM, Teoh SH, Hutmacher DW (2002) Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng C Biomimet Supramol Syst 20:49–56

    Article  Google Scholar 

  81. Kim SS, Utsunomiya H, Koski JA, Wu BM, Cima MJ, Sohn J, Mukai K, Griffith LG, Vacanti JP (1998) Survival and function of hepatocytes o a novel three-dimensional synthetic biodegradable polymer scaffolds with an intrinsic network of channels. Ann Surg 228:8–13

    Article  CAS  Google Scholar 

  82. Manjubala I, Woesz A, Pilz C, Rumpler M, Fratzl-Zelman N, Roschger P, Stampfl J, Fratzl P (2005) Biomimetic mineral-organic composite scaffolds with controlled internal architecture. J Mater Sci Mater Med 16:1111–1119

    Article  CAS  Google Scholar 

  83. Yeong WY, Chua CK, Leong KF, Chandrasekaran M, Lee MW (2006) Indirect fabrication of collagen scaffold based on inkjet printing technique. Rapid Prototyping J 12:229–237

    Article  Google Scholar 

  84. Chua CK, Yeong WY, Leong KF (2005) Development of scaffolds for tissue engineering using a 3D inkjet model maker. In: Bártolo PJ et al (ed) Virtual modelling and rapid manufacturing. Taylor&Francis, London

    Google Scholar 

  85. Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22:354–362

    Article  CAS  Google Scholar 

  86. Tsang VL, Bhatia SN (2004) Three-dimensional tissue fabrication. Adv Drug Deliv Rev 56:1635–1647

    Article  Google Scholar 

  87. Naing MW, Chua CK, Leong KF, Wang Y (2005) Fabrication of customised scaffolds using computer aided design and rapid prototyping techniques. Rapid Prototyping J 11:249–259

    Article  Google Scholar 

  88. Sun W, Starly B, Nam J, Darling A (2005) BioCAD modeling and its applications in computeraided tissue engineering. Comput Aided Design BioCAD 37:1097–1114

    Article  Google Scholar 

  89. Moura CS, Bártolo PJ, Almeida HA (2010) Intelligent biopolymer selector system for medical applications. In: Bártolo PJ et al (eds) Innovative developments in design and manufacturing. Taylor&Francis, London, pp 81–86

    Google Scholar 

  90. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  CAS  Google Scholar 

  91. Janssen FW, Oostra J, Oorschot A, van Blitterswijk CA (2006) A perfusion bioreactor system capable of producing clinically relevant volumes of tissue-engineered bone: in vivo bone formation showing proof of concept. Biomaterials 27:315–323

    Article  CAS  Google Scholar 

  92. Pörtner R, Nagel-Heyer S, Goepfert C, Adamietz P, Meenen NM (2005) Bioreactor design for tissue engineering. Biosci Bioeng 100:235–245

    Article  Google Scholar 

  93. Clark ER, Clark EL (2005) Microscopic observations on the growth of blood capillaries in the living mammal. Am J Anat 64:251–301

    Article  Google Scholar 

  94. Malda J, Rouwkema J, Martens DE, le Comte EP, Kooy FK, Tramper J, van Blitterswijk CA, Riesle J (2004) Oxygen gradients in tissue-engineered PEGT/PBT cartilaginous constructs: measurement and modeling. Biotechnol Bioeng 86:9–18

    Article  CAS  Google Scholar 

  95. Jain RK, Au P, Tam J, Duda DG, Fukumura D (2005) Engineering vascularized tissue. Nat Biotechnol 23:821–823

    Article  CAS  Google Scholar 

  96. Johnson PC, Mikos AG, Fisher JP, Jansen JA (2007) Strategic directions in tissue engineering. Tissue Eng 13:2827–2837

    Article  Google Scholar 

  97. Almeida HA, Bártolo PJ (2008) Computer simulation and optimisation of tissue engineering scaffolds: mechanical and vascular behaviour. In: Halevi Y, Fischer A (eds) 9th Biennial ASME conference on engineering systems design and analysis (ESDA2008). Haifa Isreal

    Google Scholar 

  98. Humphrey JD, Delange SL (2003) An introduction to biomechanics – solids and fluids, analysis and design. Springer, New York

    Google Scholar 

  99. Fung YC (1990) Biomechanics: motion, flow, stress and growth. Springer-Verlag, New York

    Google Scholar 

  100. Almeida HA, Bártolo PJ, Ferreira J (2007) Mechanical behaviour and vascularisation analysis of tissue engineering scaffolds. In: Bártolo PJ et al (eds) Virtual and rapid manufacturing. Taylor&Francis, London, pp 73–80

    Google Scholar 

  101. Druecke D, Langer S, Lamme E, Pieper J, Ugarkovic M, Steinau HU, Homann HH (2004) Neovascularization of poly(ether ester) block-copolymer scaffolds in vivo: long-term investigations using intravital fluorescent microscopy. Biomed Mater Res A 68:10–18

    Google Scholar 

  102. Laschke MW et al (2006) Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng 12:2093–2104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the Portuguese Foundation of Science and Technology through a PhD grant of Henrique Almeida (SFRH/BD/37604/2007). The authors also wish to thank the sponsorship given by CYTED through a Biomanufacturing Network “Rede Iberoamericana de Biofabricação”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo J. Bártolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Almeida, H.A., Bártolo, P.J. (2012). Structural and Vascular Analysis of Tissue Engineering Scaffolds, Part 1: Numerical Fluid Analysis. In: Liebschner, M. (eds) Computer-Aided Tissue Engineering. Methods in Molecular Biology, vol 868. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-764-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-764-4_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-763-7

  • Online ISBN: 978-1-61779-764-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics