Skip to main content

Natural Products Isolation in Modern Drug Discovery Programs

  • Protocol
  • First Online:
Book cover Natural Products Isolation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 864))

Abstract

Natural products play a vital role in drug discovery. They have served as the basic reference and initiators in drug discovery programs. Natural products as pure compounds have been involved in western medicine as drugs or lead compounds for drug discovery and development. In traditional medicine, they have been involved for a very long time as medicinal extracts, infusions, decoctions, or other therapeutic preparations. Modern drug discovery programs require an arsenal of drug candidate molecules in pure form whose activities (usually against cells or enzymes) are rapidly determined using high-throughput screening (HTS) and activities are expected in micro- (μM) to nanomolar (nM) levels. The difficulty in meeting today’s standards for drug candidate molecules poses the question: are natural products still relevant in modern drug discovery programs? This and other issues, including the spectroscopic investigation of crude extracts, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730

    Article  PubMed  CAS  Google Scholar 

  2. Tse MT (2010) Antimalarial drugs: speeding to a new lead. Nat Rev Drug Discov 9:842

    Article  PubMed  CAS  Google Scholar 

  3. Ganesan A (2008) The impact of natural products upon modern drug discovery. Curr Opin Chem Biol 12:306–317

    Article  PubMed  CAS  Google Scholar 

  4. Butler MS (2004) The role of natural product chemistry in drug discovery. J Nat Prod 67:2141–2153

    Article  PubMed  CAS  Google Scholar 

  5. Newman DJ, Gordon M, Cragg GM, Kenneth M, Snader KM (2000) The influence of natural products upon drug discovery. Nat Prod Rep 17:215–234

    Article  PubMed  CAS  Google Scholar 

  6. Shu Y (1998) Recent natural products based drug development: a pharmaceutical industry perspective. J Nat Prod 61:1053–1071

    Article  PubMed  CAS  Google Scholar 

  7. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  PubMed  CAS  Google Scholar 

  8. Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4:206–220

    Article  PubMed  CAS  Google Scholar 

  9. Singh SB, Barrett JF (2006) Empirical antibacterial drug discovery – foundation in natural products. Biochem Pharmacol 71(100):6–1015

    Google Scholar 

  10. UNEP (1992) Rio declaration on environment and development. http://www.unep.org

  11. Kingston DGI (2010) Modern natural products drug discovery and its relevance to biodiversity conservation. J Nat Prod. doi:10.1021/np100550t

  12. Rishton GM (2008) Natural products as a robust source of new drugs and drug leads: past successes and present day issues. Am J Cardiol 101:43D–49D

    Article  PubMed  CAS  Google Scholar 

  13. Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13:894–901

    Article  PubMed  CAS  Google Scholar 

  14. Jesse WHL, Vederas JC (2009) Drug discovery and natural products: end of an era or an endless frontier? Science 325:161–165

    Article  Google Scholar 

  15. Ni H (2003) Prevalence of self-reported heart failure among US adults: results from the 1999 National Health Interview Survey. Am Heart J 146:121–128

    Article  PubMed  Google Scholar 

  16. Reynolds T, Dweck AC (1999) Aloe vera leaf gel: a review update. J Ethnopharmacol 68:3–37

    Article  PubMed  CAS  Google Scholar 

  17. Kuduk-Jaworska J, Puszko A, Kubiak M, Pelczynska M (2004) Synthesis, structural, physico-chemical and biological properties of new palladium (II) complexes with 2,6-dimethyl-4-nitropyridine. J Inorg Biochem 98:1447–1456

    Article  PubMed  CAS  Google Scholar 

  18. Reihemann K, Behnke B, Schulze-Osthoff K (1999) Plant extract from stinging nettle (Urtica dioica), an antirheumatic remedy, inhibit the proinflammatory transcription factor. FEBS Lett 442:89–94

    Article  Google Scholar 

  19. Tao X, Cush JJ, Garret M, Lipsky PE (2001) A phase I study of ethyl acetate extract of the chinese antirheumatic herb Tripterygium wilfordii Hook F. in rheumatoid arthritis. J Rheumatol 28:2160–2167

    PubMed  CAS  Google Scholar 

  20. Setty AR, Sigal LH (2005) Herbal medications commonly used in the practice of rheumatology: mechanisms of action, efficacy, and side effects. Semin Arthritis Rheum 34:773–784

    Article  PubMed  Google Scholar 

  21. Lawan A, Katsayal UA, Yaro AH (2008) Anti-inflammatory and anti-nociceptive effects of the methanolic extract of the stem bark of Ficus vallis-Choudae delile (Moraceae). Afr J Pharm Pharmacol 2:200–203

    Google Scholar 

  22. Cragg GM, Newman DJ, Snader KM (1997) Natural products in drug discovery and development. J Nat Prod 60:52–60

    Article  PubMed  CAS  Google Scholar 

  23. Paul VJ (ed) (1992) Ecological roles of marine natural products. Cornell University Press, Ithaca

    Google Scholar 

  24. McClintock JB, Baker BJ (2001) Marine chemical ecology. CRC, New York

    Book  Google Scholar 

  25. Kim J, Park EJ (2002) Anti-cancer agents. Curr Med Chem 2:485

    CAS  Google Scholar 

  26. Eldridge GR et al (2002) High-throughput method for the production and analysis of large natural product libraries for drug discovery. Anal Chem 74:3963–3971

    Article  PubMed  CAS  Google Scholar 

  27. Petra S, Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5:210–218

    Article  Google Scholar 

  28. Masia N (2006) The cost of developing a new drug. In: US Department of State (ed) Focus on intellectual property rights. Washington DC, pp 82–83

    Google Scholar 

  29. Adams CP, Brantner VV (2006) Estimating the cost of new drug development: is it really 802 million dollars? Health Aff (Millwood) 25(2):420–428

    Article  Google Scholar 

  30. Bradburne C, Robertson K, Thach D (2009) Assessment of methods and analysis of outcomes for comprehensive optimization of nucleofection. Gene Vaccines Ther 7:6

    Article  Google Scholar 

  31. Jenkins ID et al (2009) Synthesis of four novel natural product inspired scaffolds for drug discovery. J Org Chem 74:1304–1313

    Article  PubMed  CAS  Google Scholar 

  32. Marcaurelle LA, Johannes CW (2008) Application of natural product-inspired diversity-oriented synthesis to drug discovery. Prog Drug Res 66:189–216

    Google Scholar 

  33. Paterson I, Edward AA (2005) The renaissance of natural products as drug candidates. Science 310(5747):451–453

    Article  PubMed  Google Scholar 

  34. Peterson F, Amstutz R (eds) (2008) Natural compounds as drugs, volume II. Birkhauser Velag AG, Basel

    Google Scholar 

  35. Ebada SS, Edrada-Ebel RA, Lin WH, Proksch P (2008) Methods for isolation, purification and structural elucidation of bioactive secondary metabolites from marine invertebrates. Nat Protoc 3:1820–1831

    Article  PubMed  CAS  Google Scholar 

  36. Proksch P, Edrada RA, Ebel R (2002) Drugs from the seas – current status and microbiological implications. Appl Microbiol Biotechnol 59:125–134

    Article  PubMed  CAS  Google Scholar 

  37. Daniel R (2004) The soil metagenome – a rich resource for the discovery of novel natural products. Curr Opin Biotechnol 15:199–204

    Article  PubMed  CAS  Google Scholar 

  38. Knight V et al (2003) Diversifying microbial natural products for drug discovery. Appl Microbiol Biotechnol 62:446–458

    Article  PubMed  CAS  Google Scholar 

  39. Lam KS (2007) New aspects of natural products in drug discovery. Trends Microbiol 15:279–289

    Article  PubMed  CAS  Google Scholar 

  40. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of pacific yew. Science 260:214–216

    Article  PubMed  CAS  Google Scholar 

  41. Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124

    Article  PubMed  CAS  Google Scholar 

  42. Kusari S, Zühlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7

    Article  PubMed  CAS  Google Scholar 

  43. Kusari S et al (2008) An endophytic fungus from Hypericum perforatum that produces hypericin. J Nat Prod 71:159–162

    Article  PubMed  CAS  Google Scholar 

  44. Vacelet J (1975) Etude en microscopie electronique de l’association entre bacteries et spongiaires du genre Verongia (Dictyoceratida). J Microsc Biol Cell 23:271–288

    Google Scholar 

  45. Friedrich AB et al (1999) Microbial diversity in the marine sponge Aplysina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridization (FISH). Mar Biol 134:461–470

    Article  Google Scholar 

  46. Tachibana K et al (1981) Okadaic acid, a cytotoxic polyether from two marine sponges of the genus Halichondria. J Am Chem Soc 103:2469–2471

    Article  CAS  Google Scholar 

  47. Murakami Y, Oshima Y, Yasumoto T (1982) Identification of okadaic acid as a toxic component of a marine dinoflagellate Prorocentrum lima. Bull Jpn Soc Sci Fish 48:69–72

    Article  CAS  Google Scholar 

  48. Harrigan GG et al (1998) Symplostatin 1: a dolastatin 10 analogue from the marine cyanobacterium Symploca hydnoides. J Nat Prod 61:1075–1077

    Article  PubMed  CAS  Google Scholar 

  49. Schupp P et al (1999) Staurosporine derivatives from the ascidian Eudistoma toealensis and its predatory flatworm Pseudoceros sp. J Nat Prod 62:959–962

    Article  PubMed  CAS  Google Scholar 

  50. Ikeda Y et al (1983) Safracins, new antitumor antibiotics. III. Biological activity. J Antibiot (Tokyo) 36:1284–1289

    CAS  Google Scholar 

  51. Cuevas C et al (2000) Synthesis of ecteinascidin ET-743 and phthalascidin PT-650 from cyanosafracin. Org Lett 2:2545–2548

    Article  PubMed  CAS  Google Scholar 

  52. Raoa G et al (2009) Antifungal alkaloids from the fresh rattan stem of Fibraurea recisa Pierre. J Ethnopharmcol 123:1–5

    Article  Google Scholar 

  53. Hamid R et al (2004) Comparison of Alamar blue and MTT assays for high-throughput screening. Toxicol In Vitro 18:703–710

    Article  PubMed  CAS  Google Scholar 

  54. Coats P et al (2008) Inhibition of non-ras protein farnesylation reduces in-stent restenosis. Atherosclerosis 197:515–523

    Article  PubMed  CAS  Google Scholar 

  55. O’Brien P, Haskins JR (2007) In vitro cytotoxicity assessment. Methods Mol Biol 356:415–425

    PubMed  Google Scholar 

  56. Freshney RI (2010) Culture of animal cells: a manual of basic techniques. Wiley-Blackwell, New Jersey

    Book  Google Scholar 

  57. Stacey GN, Hockley DH (2006) A manual of cell culture techniques. Division of Cell Biology and Imaging, National Institute for Biological Standards and Control, UK

    Google Scholar 

  58. Zon LI, Peterson RT (2005) In vivo drug discovery in the Zebra fish. Nat Rev Drug Discov 4:35–44

    Article  PubMed  CAS  Google Scholar 

  59. Huoa R et al (2003) Assessment of techniques for DOSY NMR data processing. Anal Chim Acta 490:231–251

    Article  Google Scholar 

  60. Ludwig C, Viant MR (2010) Two-dimensional J-resolved NMR spectroscopy: review of a key methodology in the metabolomics toolbox. Phytochem Anal 21:22–32

    Article  PubMed  CAS  Google Scholar 

  61. Fiehn O, Weckwerth W (2002) Can we ­discover novel pathways using metabolomic analysis? Curr Opin Biotechnol 13:156–160

    Article  PubMed  Google Scholar 

  62. Smedsgaard J, Nielsen J (2005) Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. J Exp Bot 56:273–286

    Article  PubMed  CAS  Google Scholar 

  63. Takats Z et al (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–473

    Article  PubMed  CAS  Google Scholar 

  64. Griffiths WJ (ed) (2008) Metabolomics, metabonomics and metabolic profiling. Royal Society of Chemistry, Cambridge

    Google Scholar 

  65. Kitchen DB et al (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949

    Article  PubMed  CAS  Google Scholar 

  66. Bindseil KU et al (2001) Pure compound libraries; a new perspective for natural product based drug discovery. Drug Discov Today 6:840–847

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander I. Gray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gray, A.I., Igoli, J.O., Edrada-Ebel, R. (2012). Natural Products Isolation in Modern Drug Discovery Programs. In: Sarker, S., Nahar, L. (eds) Natural Products Isolation. Methods in Molecular Biology, vol 864. Humana Press. https://doi.org/10.1007/978-1-61779-624-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-624-1_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-623-4

  • Online ISBN: 978-1-61779-624-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics