Skip to main content

Scaling-Up of Natural Products Isolation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 864))

Abstract

Scaling-up is a way of increasing the quantity without losing the quality. The scaling-up is not always straightforward as the yield of the target compound becomes more important. The factors that influence scaling-up in a medium scale are outlined in this chapter. An example of a scale-up is also provided to illustrate some of the principles.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Cordell GA (1995) Changing strategies in natural products chemistry. Phytochemistry 40: 1585–1612

    Article  CAS  Google Scholar 

  2. Schmidt FR (2005) Optimization and scale up of industrial fermentation processes. Appl Microbiol Biotechnol 68:425–435

    Article  PubMed  CAS  Google Scholar 

  3. Williams HD, Stone JM, Hauck RP, Rahman KS (1989) Why are secondary metabolites (natural products) biosynthesized? J Nat Prod 52:1189–1208

    Article  PubMed  CAS  Google Scholar 

  4. Verrall MS, Warr SRC (1998) Scale-up of natural products isolation. In: Cannell RJP (ed) Methods in biotechnology, vol. 4: natural products isolation. Humana, Totowa, NJ

    Google Scholar 

  5. Martin SM, Kau DA, Wrigley SK (2006) Scale-up of natural products isolation. In: Sarker SD, Gray AI, Latif Z (eds) Methods in biotechnology: natural products isolation, 2nd edn. Humana, Totowa, NJ

    Google Scholar 

  6. Ignova M, Montague GA, Ward AC, Glassey J (1999) Fermentation seed quality analysis with self-organising neural networks. Biotechnol Bioeng 64:82–91

    Article  PubMed  CAS  Google Scholar 

  7. Cunha CC, Glassey J, Montague GA, Albert S, Mohan P (2002) An assessment of seed quality and its influence on productivity estimation in an industrial antibiotic fermentation. Biotechnol Bioeng 78:658–669

    Article  PubMed  CAS  Google Scholar 

  8. Neves AA, Vieira LM, Menezes JC (2001) Effects of preculture variability on clavulanic acid fermentation. Biotechnol Bioeng 72: 628–633

    Article  PubMed  CAS  Google Scholar 

  9. Sharma G, Pandey RR (2010) Influence of culture media on growth, colony character and sporulation of fungi isolated from decaying vegetable wastes. J Yeast Fungal Res 1: 157–164

    Google Scholar 

  10. DeWitt JP, Jackson JV, Paulus TJ (1989) Actinomycetes. In: Neway JO (ed) Fermentation process development and industrial microorganisms. Marcel Dekker, New York, pp 33–54

    Google Scholar 

  11. Baltz RH (1997) Molecular approaches to yield improvements. In: Strohl WR (ed) Biotechnology of antibiotics, 2nd edn. Marcel Dekker, New York, pp 49–62

    Google Scholar 

  12. Fazenda ML (2007) Culture fermentation of higher fungi. In: Laskin IA, Gadd GM, Sariaslani S (eds) Advances in Applied Microbiology. Elsevier, San Diego

    Google Scholar 

  13. Cui YQ, van der Lans RGJM, Luyben KCAM (1998) Effects of dissolved oxygen tension and mechanical forces on fungal morphology in submerged fermentation. Biotechnol Bioeng 57:409–419

    Article  PubMed  CAS  Google Scholar 

  14. Child JJ, Knapp C, Eveleigh DE (1973) Improved pH control of fungal culture media. Mycologia 65:1078–1086

    Article  PubMed  CAS  Google Scholar 

  15. Stanbury PF, Whitaker A, Hall SJ (2003) Principles of fermentation technology, 2nd edn. Butterworth-Heinemann, Burlington, MA

    Google Scholar 

  16. Wiley J, Sherwood A, Woolverton C (2009) Microbial growth in prescott’s principles of microbiology. McGraw-Hill, New York

    Google Scholar 

  17. Curran PMT (1980) The effect of temperature, pH, light and dark on the growth of fungi from Irish coastal waters. Mycologia 72: 350–358

    Article  Google Scholar 

  18. Meyer VR (1994) Practical high performance liquid chromatography, 2nd edn. Wiley, Chichester, UK

    Google Scholar 

  19. Plackett RL, Burman (1946) The design of multifactorial experiments. Biometrika 33: 305–325

    Article  Google Scholar 

  20. Verall MS (ed) (1996) Downstream processing of natural products – a practical handbook. Wiley, Chichester, UK

    Google Scholar 

  21. Lee JW, Jung H, Kwak DH, Chung PG (2005) Adsorption of dichloromethane from water onto a hydrophobic polymer resin XAD-1600. Water Res 39:617–629

    Article  PubMed  CAS  Google Scholar 

  22. Baltz RH (2001) Genetic methods and strategies for secondary metabolite yield improvements in actinomycetes. Antonie van Leeuwenhook 79:251–259

    Article  CAS  Google Scholar 

  23. Baltz RH (2003) Genetic engineering solutions for natural products in actinomycetes. In: Vinci VA, Parekh SR (eds) Handbook of industrial cell culture: mammalian, microbial, and plant cells. Humana, Totawa, NJ, pp 137–170

    Google Scholar 

  24. Kavanagh K (2005) Fungal fermentation: technology and products, chap. 4. In: Kavanagh K (ed) Fungi: biology and applications. Wiley & Co. Ltd., Chichester, pp 89–112

    Google Scholar 

  25. Regentin R, Kennedy J, Wu N, Carney JR, Licari P, Desai R (2004) Precursor-directed biosynthesis of novel triketide lactones. Biotechnol Prog 1:122–127

    Google Scholar 

  26. Ainsworth AM, Chicarelli-Robinson MI, Copp BR, Fauth U, Hylands PJ, Holloway JA, Latif M, O’Brien GB, Porter N, Renno DV (1995) Xenovulene A, a novel GABA-benzodiazepine receptor binding compound produced by Acremonium strictum. J Antibiot 48:568–573

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yash Kumarasamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kumarasamy, Y. (2012). Scaling-Up of Natural Products Isolation. In: Sarker, S., Nahar, L. (eds) Natural Products Isolation. Methods in Molecular Biology, vol 864. Humana Press. https://doi.org/10.1007/978-1-61779-624-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-624-1_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-623-4

  • Online ISBN: 978-1-61779-624-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics