Skip to main content

Isolation of Microbial Natural Products

  • Protocol
  • First Online:
Natural Products Isolation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 864))

Abstract

In principle, the isolation of secondary metabolites from microbes does not differ from their isolation from other organisms. The extraction procedure may of course be quite different, especially if it is carried out in an industrial scale, but when an extract containing the metabolites of interest is at hand, it is the same palette of adsorbents and chromatographic techniques that provide the major tools for the fractionation and eventual isolation of the pure compounds. Compared to plants, in which one is sure to find secondary metabolites of certain types, e.g., flavonoids, microbes can be expected to produce virtually anything and it is important to go about the fractionation procedure with an open mind. This chapter presents an overview of preparation of extracts from microbial sources, and various methods and strategies involved in the isolation and characterization of microbial natural products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riddle JM (1985) Dioscorides on pharmacy and medicine. University of Texas Press, Austin, TX

    Google Scholar 

  2. Mez-Mangold L (1971) A history of drugs. F. Hoffmann-La Roche, Basle, Switzerland

    Google Scholar 

  3. Reiner R (1982) Antibiotics: an introduction. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  4. Abraham EP, Chain E, Fletcher CM, Florey HW, Gardner AD, Heatley NG, Jennings MA (1941) Further observations on penicillin. Lancet 16:177–189

    Article  Google Scholar 

  5. Clutterbuck PW, Lovell R, Raistrick H (1932) Biochem J 26:1907–1918

    PubMed  CAS  Google Scholar 

  6. Reid RD (1935) Some properties of a bacterial-inhibitory substance produced by a mold. J Bact 29:215–221

    PubMed  CAS  Google Scholar 

  7. Fleming A (1929) On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Brit J Exp Path 10:226–236

    CAS  Google Scholar 

  8. Craig LC (1944) Identification of small amounts of organic compounds by distribution studies. II. Separation by counter-current distribution. J Biol Chem 155:519–534

    CAS  Google Scholar 

  9. Craig LC (1950) Partition chromatography and countercurrent distribution. Anal Chem 22:1346–1352

    Article  CAS  Google Scholar 

  10. Mandava NB, Ruth JM (1988) The origins of countercurrent chromatography. In: Mandava NB, Ito Y (eds) Countercurrent chromatography – theory and practice, Chromatographic science series 44. Marcel Dekker Inc, New York, pp 27–78

    Google Scholar 

  11. Mueller JM, Fuhrer H, Gruner J, Voser W (1976) Metabolites from microorganisms. 160th Communication. Conocandin, a new fungistatic antibiotic from Hormococcus conorum (Sacc. Et Roum.) Roback. Helv Chim Acta 59:2506–2514

    Article  CAS  Google Scholar 

  12. Bearder JR, MacMillan J (1980) Separation of gibberellins and related compounds by droplet counter-current chromatography. Monogr – Br Plant Growth Regul Group 5:25–30

    CAS  Google Scholar 

  13. Stierle DB, Stierle AA, Ganser B (1997) New phomopsolides from a Penicillium sp. J Nat Prod 60:1207–1209

    Article  PubMed  CAS  Google Scholar 

  14. Hostettmann K, Marston A (1988) Natural products isolation of droplet countercurrent chromatography. In: Mandava NB, Ito Y (eds) Countercurrent chromatography – theory and practice, Chromatographic science series 44. Marcel Dekker Inc, New York, pp 465–492

    Google Scholar 

  15. McAlpine J (1998) Separation by high-speed countercurrent chromatography. In: Cannell RJP (ed) Natural products isolation. Humana, Totowa, NJ, pp 247–260

    Chapter  Google Scholar 

  16. Dawson MJ, Farthing JE, Marshall PS, Middleton RF, O’Neill MJ, Shuttleworth A, Stylli C, Tait RM, Taylor PM, Wildman HG, Buss AD, Langley D, Hayes MV (1992) The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activity. J Antibiotics 45:639–647

    CAS  Google Scholar 

  17. Hillebrand S, Montilla EC, Koehler N, Winterhalter P (2009) Cyanidin-based anthocyanin from fruits and vegetables: large-scale isolation by countercurrent chromatography. Agro Food Industry Hi-Tech 20:52–55

    CAS  Google Scholar 

  18. Dufresne C (1998) Isolation by ion exchange methods. In: Cannell RJP (ed) Natural products isolation. Humana, Totowa, NJ, pp 141–164

    Chapter  Google Scholar 

  19. Miller TW, Goegelman RT, Weston RG, Putter IA, Wolf FJ (1972) Cephamycins, a new family of β-lactam antibiotics. II. Isolation and chemical characterisation. Antimicrob Agents Chemother 2:132–135

    PubMed  CAS  Google Scholar 

  20. Tsuchiya K, Kobayashi S, Harada T, Kurokawa T, Nakagawa T, Shimada N, Kobayashi K (1995) Gualamycin, a novel acaricide produced by Streptomyces sp. NK11687. I. Taxonomy, production, isolation, and preliminary characterization. J Antibiotics 48:626–629

    CAS  Google Scholar 

  21. Bergstrom JD, Kurtz MM, Rew DJ, Amend AM, Karkas JD, Bostedor RG, Bansal VS, Dufresne C, VanMiddlesworth FL, Hensens OD, Liesch JM, Zink DL, Wilson KE, Onishi J, Milligan JA, Bills G, Kaplan L, Nallin Omstead M, Jenkins RG, Hunag L, Meinz MS, Quinn L, Burg RW, Kong YL, Mochales S, Mojena M, Martin I, Pelaez F, Diez MT, Alberts AW (1993) Zaragozic acids: a family of fungal metabolites that are picomolar competitive inhibitors of squalene synthase. Proc Natl Acad Sci USA 90:80–84

    Article  PubMed  CAS  Google Scholar 

  22. Sudderth RB, Jensen WH (1975) Liquid ion exchange extraction of zinc, S. African Patent, 19751125

    Google Scholar 

  23. Hood JD, Box SJ, Verrall MS (1979) Olivanic acids, a family of β-lactam antibiotics with β-lactamase inhibitory properties produced by Streptomyces species. II. Isolation and characterisation of the olivanic acids MM 4550, MM 13902 and MM 17880 from Streptomyces olivaceus. J Antibiotics 32:295–304

    CAS  Google Scholar 

  24. Rees MJ, Cutmore EA, Verrall MS (1994) Isolation of amphotericin B by liquid ion exchange extraction. Separations in Biotechnology 3, Special Publication – Royal Society of Chemistry 158, 399–405

    Google Scholar 

  25. The reader is directed to the Mitsubishi Chemical Corporation website http://www.m-kagaku.co.jp/index_en.htm

  26. The reader is directed to the Rohm and Haas website http://www.rohmhaas.com

  27. Okada H, Kamiya S, Shiina Y, Suwa H, Nagashima M, Nakajima S, Shimokawa H, Sugiyama E, Kondo H, Kojiri K, Suda H (1998) BE-31405, a new antifungal produced by Penicillium minioluteum. I. Description of producing organism, fermentation, isolation, physico-chemical and biological properties. J Antibiotics 51:1081–1086

    CAS  Google Scholar 

  28. Kobayashi E, Ando K, Nakano H, Iida T, Ohno H, Morimoto M, Tamaoki T (1989) Calphostins (UCN-1028), novel and specific inhibitors of protein kinase C. I. Fermentation, isolation, physico-chemical properties and biological activites. J Antibiotics 42:1470–1474

    CAS  Google Scholar 

  29. Igarishi M, Hayashi C, Homma Y, Hattori S, Kinoshita N, Hamada M, Takeuchi T (2000) Tubelactomicin A, a novel 16-membered lactone antibiotic, from Nocardia sp. I. Taxonomy, production, isolation and biological properties. J Antibiotics 53:1096–1101

    Google Scholar 

  30. Ishii S, Katsumata S, Arai Y, Fujimoto K, Morimoto M (1987) Salt of DC-52 and a pharmaceutical composition containing the same. US Patent 4,649,199

    Google Scholar 

  31. Nagamura A, Fujii N, Tajima K (2000) Manufacture of antitumor antibiotic substance, DX-52-1, with Streptomyces melanovinaceus. Jpn. Kokai Tokkyo Koho; Japanese Patent 20000125896

    Google Scholar 

  32. Kang T-W, Choi B-T, Choi G-S, Choi Y-R, Hwang S-H (2004) Method for purifying teicoplanin A2. US Patent Appl. 20040024177

    Google Scholar 

  33. French JC, Edmunds CR, McDonnell P, Showalter HDH (1995) Process for purifying pentostatin. US Patent 5,463,035

    Google Scholar 

  34. Exarchou V, Krucker M, van Beek TA, Vervoort J, Gerothanassis IP, Albert K (2005) LC–NMR coupling technology: recent advancements and applications in natural products analysis. Magn Reson Chem 43:681–687

    Article  PubMed  CAS  Google Scholar 

  35. Korfmacher WA (2005) Foundation review: principles and applications of LC-MS in new drug discovery. Drug Disc Today 10:1357–1367

    Article  CAS  Google Scholar 

  36. Zhou S, Song Q, Tang Y, Naidong W (2005) Critical review of development, validation, and transfer for high throughput bioanalytical LC-MS/MS methods. Curr Pharmaceut Anal 1:3–14

    Article  Google Scholar 

  37. Zhang C, Zink DI, Ushio M, Burges B, Onishi R, Masurekar P, Barrett JF, Singh SB (2008) Isolation, structure, and antibacterial activity of thiazomycin A, a potent thiazolyl peptide antibiotic from Amygcolatopsis fastidiosa. Biorg Med Chem 16:8818–8823

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olov Sterner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sterner, O. (2012). Isolation of Microbial Natural Products. In: Sarker, S., Nahar, L. (eds) Natural Products Isolation. Methods in Molecular Biology, vol 864. Humana Press. https://doi.org/10.1007/978-1-61779-624-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-624-1_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-623-4

  • Online ISBN: 978-1-61779-624-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics