Novel NMR and MS Approaches to Metabolomics

  • Ian A. Lewis
  • Michael R. Shortreed
  • Adrian D. Hegeman
  • John L. MarkleyEmail author
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Identifying and quantifying metabolites in complex biological samples is one of the most challenging aspects of metabolomics. Recently, several important advances in databases, software, instrumentation, and laboratory techniques have greatly simplified the most laborious tasks of metabolite identification and have made quantification more reliable. These technological advances have made bioanalytically oriented studies a feasible alternative to the statistics-based methods commonly used for metabolomics. We discuss the tools that have become most important in our own research and comment on emerging technologies that may play an important role in future studies. In addition, we provide practical guidelines for designing studies and give the step-by-step protocols used in our lab for sample preparation, metabolite identification, and accurate quantification of molecules.

Key words

Bioanalytical metabolomics BMRB (BioMagResBank) extraction methodology identification informatics resources mass spectrometery MMCD (Madison Metabolomics Consortium Database) NMR spectroscopy quantification rNMR software 



This work was supported by the National Center for Research Resources of the National Institutes of Health under grant P41 RR02301; I.A.L. was the recipient of a fellowship from the NHGRI 1T32HG002760.






Bioanalytical metabolomics

Comprehensive quantitative analysis of metabolites in complex biological samples


Heteronuclear single quantum correlation


Mass spectrometry


Nuclear magnetic resonance


  1. 1.
    Lindon JC, Holmes E, Nicholson JK. Metabonomics in pharmaceutical R&D. FEBS J. 2007;274:1140–51.PubMedCrossRefGoogle Scholar
  2. 2.
    Radda GK, Seeley PJ. Recent studies on cellular metabolism by nuclear magnetic resonance. Annu Rev Physiol. 1979;41:749–69.PubMedCrossRefGoogle Scholar
  3. 3.
    Shulman RG, Brown TR, Ugurbil K, Ogawa S, Cohen SM, den Hollander JA. Cellular applications of 31P and 13C nuclear magnetic resonance. Science. 1979;205:160–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Cui Q, Lewis IA, Hegeman AD, Anderson ME, Li J, Schulte CF, Westler WM, Eghbalnia HR, Sussman MR, Markley JL. Metabolite identification via the Madison Metabolomics Consortium Database. Nat Biotechnol. 2008;26:162–4.PubMedCrossRefGoogle Scholar
  5. 5.
    Fan TW, Lane AN, Shenker M, Bartley JP, Crowley D, Higashi RM. Comprehensive chemical profiling of gramineous plant root exudates using high-resolution NMR and MS. Phytochemistry. 2001;57:209–21.PubMedCrossRefGoogle Scholar
  6. 6.
    Lewis IA, Schommer SC, Hodis B, Robb KA, Tonelli M, Westler WM, Sussman MR, Markley JL. Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H–13C NMR spectra. Anal Chem. 2007;79:9385–90.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Brown LM, Pais A, Pippard AB. Twentieth century physics. New York: American Institute of Physics Press; 1995.CrossRefGoogle Scholar
  8. 8.
    Hurlbert SH. Pseudoreplication and the design of ecological field experiments. Ecol Monogr. 1984;54:187–211.CrossRefGoogle Scholar
  9. 9.
    Mehta T, Tanik M, Allison DB. Towards sound epistemological foundations of statistical methods for high-dimensional biology. Nat Genet. 2004;36:943–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Steinbeck C, Krause S, Kuhn S. NMRShiftDB-constructing a free chemical information system with open-source components. J Chem Inf Comput Sci. 2003;43:1733–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Sadtler P. Sadtler Standard NMR Spectra N.M.R. Chemical Shift Index. Philadelphia: Sadtler Research Laboratories, PA (proton and carbon-13 spectra); 1967.Google Scholar
  12. 12.
    Seavey BR, Farr EA, Westler WM, Markley JL. A relational database for sequence-specific protein NMR data. J Biomol NMR. 1991; 1:217–36.PubMedCrossRefGoogle Scholar
  13. 13.
    Doreleijers JF, Mading S, Maziuk D, Sojourner K, Yin L, Zhu J, Markley JL, Ulrich EL. BioMagResBank database with sets of experimental NMR constraints corresponding to the structures of over 1400 biomolecules deposited in the Protein Data Bank. J Biomol NMR. 2003;26:139–46.PubMedCrossRefGoogle Scholar
  14. 14.
    Markley JL, Anderson ME, Cui Q, Eghbalnia HR, Lewis IA, Hegeman AD, Li J, Schulte CF, Sussman MR, Westler WM, Ulrich EL, Zolnai Z. New bioinformatics resources for metabolomics. Pac Symp Biocomput. 2007;12:157–68, 17990487.Google Scholar
  15. 15.
    Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte CF, Tolmie DE, Kent Wenger R, Yao H, Markley JL. BioMagResBank. Nucleic Acids Res. 2008;36:D402–8.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly MA, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau DD, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan GE, Macinnis GD, Weljie AM, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes BD, Vogel HJ, Querengesser L. HMDB: the Human Metabolome Database. Nucleic Acids Res. 2007;35:D521–6.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Zolnai Z, Lee PT, Li J, Chapman MR, Newman CS, Phillips Jr GN, Rayment I, Ulrich EL, Volkman BF, Markley JL. Project management system for structural and functional proteomics: sesame. J Struct Funct Genomics. 2003;4:11–23.PubMedCrossRefGoogle Scholar
  18. 18.
    Sansone SA, Fan T, Goodacre R, Griffin JL, Hardy NW, Kaddurah-Daouk R, Kristal BS, Lindon J, Mendes P, Morrison N, Nikolau B, Robertson D, Sumner LW, Taylor C, van der Werf M, van Ommen B, Fiehn O. The metabolomics standards initiative. Nat Biotechnol. 2007;25:846–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Lewis IA, Schommer SC, Markley JL. rNMR: open source software for high-throughput NMR-based bioanalytical chemistry. Magn Reson Chem. 2009;47:S123–6.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Vaidyanathan S, Rowland JJ, Kell DB, Goodacre R. Discrimination of aerobic endospore-forming bacteria via electrospray-lonization mass spectrometry of whole cell suspensions. Anal Chem. 2001;73:4134–44.PubMedCrossRefGoogle Scholar
  21. 21.
    Aharoni A, Ric de Vos CH, Verhoeven HA, Maliepaard CA, Kruppa G, Bino R, Goodenowe DB. Nontargeted metabolome analysis by use of Fourier transform Ion cyclotron mass spectrometry. OMICS. 2002;6:217–34.PubMedCrossRefGoogle Scholar
  22. 22.
    Koek MM, Muilwijk B, van der Werf MJ, Hankemeier T. Microbial metabolomics with gas chromatography/mass spectrometry. Anal Chem. 2006;78:1272–81.PubMedCrossRefGoogle Scholar
  23. 23.
    Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN, Willmitzer L. Metabolite profiling for plant functional genomics. Nat Biotechnol. 2000;18:1157–61.PubMedCrossRefGoogle Scholar
  24. 24.
    Wu L, Mashego MR, van Dam JC, Proell AM, Vinke JL, Ras C, van Winden WA, van Gulik WM, Heijnen JJ. Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. Anal Biochem. 2005;336:164–71.PubMedCrossRefGoogle Scholar
  25. 25.
    Want EJ, O’Maille G, Smith CA, Brandon TR, Uritboonthai W, Qin C, Trauger SA, Siuzdak G. Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry. Anal Chem. 2006;78:743–52.PubMedCrossRefGoogle Scholar
  26. 26.
    Wang W, Zhou H, Lin H, Roy S, Shaler TA, Hill LR, Norton S, Kumar P, Anderle M, Becker CH. Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal Chem. 2003;75:4818–26.PubMedCrossRefGoogle Scholar
  27. 27.
    von Roepenack-Lahaye E, Degenkolb T, Zerjeski M, Franz M, Roth U, Wessjohann L, Schmidt J, Scheel D, Clemens S. Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry. Plant Physiol. 2004;134:548–59.CrossRefGoogle Scholar
  28. 28.
    Tolstikov VV, Fiehn O. Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal Biochem. 2002;301:298–307.PubMedCrossRefGoogle Scholar
  29. 29.
    Lafaye A, Labarre J, Tabet JC, Ezan E, Junot C. Liquid chromatography-mass spectrometry and 15N metabolic labeling for quantitative metabolic profiling. Anal Chem. 2005;77:2026–33.PubMedCrossRefGoogle Scholar
  30. 30.
    Dalluge JJ, Smith S, Sanchez-Riera F, McGuire C, Hobson R. Potential of fermentation profiling via rapid measurement of amino acid metabolism by liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2004;1043:3–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Stokvis E, Rosing H, Beijnen JH. Stable isotopically labeled internal standards in quantitative bioanalysis using liquid chromatography/mass spectrometry: necessity or not? Rapid Commun Mass Spectrom. 2005;19:401–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Roy SM, Anderle M, Lin H, Becker CH. Differential expression profiling of serum proteins and metabolites for biomarker discovery. Int J Mass Spectrom. 2004;238:163–71.CrossRefGoogle Scholar
  33. 33.
    Yang WC, Mirzaei H, Liu XP, Regnier FE. Enhancement of amino acid detection and quantification by electrospray ionization mass spectrometry. Anal Chem. 2006;78:4702–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Pan CL, Kora G, Tabb DL, Pelletier DA, McDonald WH, Hurst GB, Hettich RL, Samatova NF. Robust estimation of peptide abundance ratios and rigorous scoring of their variability and bias in quantitative shotgun proteomics. Anal Chem. 2006;78: 7110–20.PubMedCrossRefGoogle Scholar
  35. 35.
    Birkemeyer C, Luedemann A, Wagner C, Erban A, Kopka J. Metabolome analysis: the potential of in vivo labeling with stable isotopes for metabolite profiling. Trends Biotechnol. 2005;23:28–33.PubMedCrossRefGoogle Scholar
  36. 36.
    Mashego MR, Wu L, Van Dam JC, Ras C, Vinke JL, Van Winden WA, Van Gulik WM, Heijnen JJ. MIRACLE: mass isotopomer ratio analysis of U–13C-labeled extracts. A new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotechnol Bioeng. 2004;85:620–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Lamos SM, Shortreed MR, Frey BL, Belshaw PJ, Smith LM. Relative quantification of carboxylic acid metabolites by liquid chromatography-mass spectrometry using isotopic variants of cholamine. Anal Chem. 2007;79:5143–9.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Shortreed MR, Lamos SM, Frey BL, Phillips MF, Patel M, Belshaw PJ, Smith LM. Ionizable isotopic labeling reagent for relative quantification of amine metabolites by mass spectrometry. Anal Chem. 2006;78:6398–403.PubMedCrossRefGoogle Scholar
  39. 39.
    Yang WC, Adamec J, Regnier FE. Enhancement of the LC/MS analysis of fatty acids through derivatization and stable isotope coding. Anal Chem. 2007;79:5150–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Regnier FE, Julka S. Primary amine coding as a path to comparative proteomics. Proteomics. 2006;6:3968–79.PubMedCrossRefGoogle Scholar
  41. 41.
    Berry KA, Murphy RC. Analysis of cell membrane aminophospholipids as isotope-tagged derivatives. J Lipid Res. 2005;46:1038–46.PubMedCrossRefGoogle Scholar
  42. 42.
    Sterner JL, Johnston MV, Nicol GR, Ridge DP. Signal suppression in electrospray ionization Fourier transform mass spectrometry of multi-component samples. J Mass Spectrom. 2000;35:385–91.PubMedCrossRefGoogle Scholar
  43. 43.
    Constantopoulos TL, Jackson GS, Enke CG. Effects of salt concentration on analyte response using electrospray ionization mass spectrometry. J Am Soc Mass Spectrom. 1999;10:625–34.PubMedCrossRefGoogle Scholar
  44. 44.
    Annesley TM. Ion suppression in mass spectrometry. Clin Chem. 2003;49:1041–4.PubMedCrossRefGoogle Scholar
  45. 45.
    Guo K, Ji C, Li L. Stable-isotope dimethylation labeling combined with LC-ESI MS for quantification of amine-containing metabolites in biological samples. Anal Chem. 2007; 79:8631–8.PubMedCrossRefGoogle Scholar
  46. 46.
    Kind T, Fiehn O. Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinforma. 2006;7:234–44.CrossRefGoogle Scholar
  47. 47.
    Kind T, Fiehn O. Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinforma. 2007;8:105.CrossRefGoogle Scholar
  48. 48.
    Rodgers RP, Blumer EN, Hendrickson CL, Marshall AG. Stable isotope incorporation triples the upper mass limit for determination of elemental composition by accurate mass measurement. J Am Soc Mass Spectrom. 2000;11:835–40.PubMedCrossRefGoogle Scholar
  49. 49.
    Hegeman AD, Schulte CF, Cui Q, Lewis IA, Huttlin EL, Eghbalnia H, Harms AC, Ulrich EL, Markley JL, Sussman MR. Stable isotope assisted assignment of elemental compositions for metabolomics. Anal Chem. 2007; 79:6912–21.PubMedCrossRefGoogle Scholar
  50. 50.
    Beynon RJ, Pratt JM. Metabolic labeling of proteins for proteomics. Mol Cell Proteomics. 2005;4:857–72.PubMedCrossRefGoogle Scholar
  51. 51.
    Dumas ME, Maibaum EC, Teague C, Ueshima H, Zhou B, Lindon JC, Nicholson JK, Stamler J, Elliott P, Chan Q, Holmes E. Assessment of analytical reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP study. Anal Chem. 2006;78:2199–208.PubMedCrossRefGoogle Scholar
  52. 52.
    Holmes E, Cloarec O, Nicholson JK. Probing latent biomarker signatures and in vivo pathway activity in experimental disease states via statistical total correlation spectroscopy (STOCSY) of biofluids: application to HgCl2 toxicity. J Proteome Res. 2006;5:1313–20.PubMedCrossRefGoogle Scholar
  53. 53.
    Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM. Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem. 2006;78:4430–42.PubMedCrossRefGoogle Scholar
  54. 54.
    Fan TW. Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Prog Nucl Magn Reson Spectrosc. 1996;28:161–219.Google Scholar
  55. 55.
    Viant MR. Improved methods for the acquisition and interpretation of NMR metabolomic data. Biochem Biophys Res Commun. 2003;310:943–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Kikuchi J, Shinozaki K, Hirayama T. Stable isotope labeling of Arabidopsis thaliana for an NMR-based metabolomics approach. Plant Cell Physiol. 2004;45:1099–104.PubMedCrossRefGoogle Scholar
  57. 57.
    Peterson DJ, Loening NM. QQ-HSQC: a quick, quantitative heteronuclear correlation experiment for NMR spectroscopy. Magn Reson Chem. 2007;45:937–41.PubMedCrossRefGoogle Scholar
  58. 58.
    Koskela H, Kilpelainen I, Heikkinen S. Some aspects of quantitative 2D NMR. J Magn Reson. 2005;174:237–44.PubMedCrossRefGoogle Scholar
  59. 59.
    Heikkinen S, Toikka MM, Karhunen PT, Kilpelainen IA. Quantitative 2D HSQC (Q-HSQC) via suppression of J-dependence of polarization transfer in NMR spectroscopy: application to wood lignin. J Am Chem Soc. 2003;125:4362–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Hyberts SG, Heffron GJ, Tarragona NG, Solanky K, Edmonds KA, Luithardt H, Fejzo J, Chorev M, Aktas H, Colson K, Falchuk KH, Halperin JA, Wagner G. Ultrahigh-resolution (1)H-(13)C HSQC spectra of metabolite mixtures using nonlinear sampling and forward maximum entropy reconstruction. J Am Chem Soc. 2007;129:5108–16.PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Shrot Y, Frydman L. Spatially resolved multidimensional NMR spectroscopy within a single scan. J Magn Reson. 2004;167:42–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Ross A, Salzmann M, Senn H. Fast-HMQC using Ernst angle pulses: an efficient tool for screening of ligand binding to target proteins. J Biomol NMR. 1997;10:389–96.PubMedCrossRefGoogle Scholar
  63. 63.
    Sandusky P, Raftery D. Use of selective TOCSY NMR experiments for quantifying minor components in complex mixtures: application to the metabonomics of amino acids in honey. Anal Chem. 2005;77:2455–63.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Ian A. Lewis
    • 1
  • Michael R. Shortreed
    • 2
  • Adrian D. Hegeman
    • 3
  • John L. Markley
    • 1
    Email author
  1. 1.Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of ChemistryUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of Horticultural ScienceUniversity of MinnesotaSt. PaulUSA

Personalised recommendations