Skip to main content

The HumanCyc Pathway-Genome Database and Pathway Tools Software as Tools for Imaging and Analyzing Metabolomics Data

  • Protocol
  • First Online:
The Handbook of Metabolomics

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Metabolomics analysis provides a window to the phenotypic responses to stimuli, including disease states and drug interventions. These responses are the end result of complex processes encoded by the organism’s genome. This chapter describes a computational set of tools that can be of great assistance in all kinds of studies related to the metabolic network of an organism in the context of genomic information. These tools comprise (1) Pathway/Genome Databases (PGDBs) a high-level, last-generation database that relates metabolic information to an organism’s genome and (2) Pathway Tools, a software suite designed to access and facilitate analysis on the PGDB information. In particular, we describe HumanCyc, the human PGDB, and explore its usefulness in analyzing and extracting knowledge from the data produced by metabolomics, transcriptomics, and other systemic experiments. In the so-called postgenomic era, the lack of sophistication of many biological databases and resources has become a hurdle for the development of complex analytical tools, especially at the systems biology level, and a common complaint by computational molecular biologists. Resources such as HumanCyc and Pathway Tools can change this situation by providing the developer with a computable encoding of biological knowledge and a sophisticated collection of computational tools to access it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL. GenBank. Nucleic Acids Res. 2006;34(Database issue):D16–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Birney E, Andrews D, Caccamo M, Chen Y, Clarke L, Coates G, Cox T, Cunningham F, Curwen V, Cutts T, et al. Ensembl 2006. Nucleic Acids Res. 2006;34(Database issue):D556–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Karp PD. An ontology for biological function based on molecular interactions. Bioinformatics. 2000;16(3):269–85.

    Article  CAS  PubMed  Google Scholar 

  4. Karp PD. Pathway databases: a case study in computational symbolic theories. Science. 2001;293(5537):2040–4.

    Article  CAS  PubMed  Google Scholar 

  5. Karp PD, Paley S, Romero P. The pathway tools software. Bioinformatics. 2002;18 Suppl 1:S225–32.

    Article  PubMed  Google Scholar 

  6. Karp PD, Riley M, Paley SM, Pellegrini-Toole A. The MetaCyc database. Nucleic Acids Res. 2002;30(1):59–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Caspi R, Foerster H, Fulcher CA, Hopkinson R, Ingraham J, Kaipa P, Krummenacker M, Paley S, Pick J, Rhee SY, et al. MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res. 2006;34(Database issue):D511–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Paley SM, Karp PD. Evaluation of computational metabolic-pathway predictions for Helicobacter pylori. Bioinformatics. 2002;18(5):715–24.

    Article  CAS  PubMed  Google Scholar 

  9. Karp PD, Krummenacker M, Paley S, Wagg J. Integrated pathway-genome databases and their role in drug discovery. Trends Biotechnol. 1999;17(7):275–81.

    Article  CAS  PubMed  Google Scholar 

  10. Romero PR, Karp P. Nutrient-related analysis of pathway/genome databases. Pac Symp Biocomput. 2001;6:471–82.

    Google Scholar 

  11. Romero PR, Karp PD. Using functional and organizational information to improve genome-wide computational prediction of transcription units on pathway-genome databases. Bioinformatics. 2004;20(5):709–17.

    Article  CAS  PubMed  Google Scholar 

  12. Romero P, Wagg J, Green ML, Kaiser D, Krummenacker M, Karp PD. Computational prediction of human metabolic pathways from the complete human genome. Genome Biol. 2005;6(1):R2.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001;98(9):5116–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Chang DE, Smalley DJ, Tucker DL, Leatham MP, Norris WE, Stevenson SJ, Anderson AB, Grissom JE, Laux DC, Cohen PS, et al. Carbon nutrition of Escherichia coli in the mouse intestine. Proc Natl Acad Sci U S A. 2004;101(19):7427–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Nikiforova VJ, Kopka J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford MJ, Hesse H, Hoefgen R. Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiol. 2005;138(1):304–18.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kayser A, Weber J, Hecht V, Rinas U. Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state. Microbiology. 2005;151(Pt 3):693–706.

    Article  CAS  PubMed  Google Scholar 

  17. Weber J, Kayser A, Rinas U. Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. II. Dynamic response to famine and feast, activation of the methylglyoxal pathway and oscillatory behaviour. Microbiology. 2005;151(Pt 3):707–16.

    Article  CAS  PubMed  Google Scholar 

  18. Green ML, Karp PD. A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinformatics. 2004;5:76.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Green ML, Karp PD. Using genome-context data to identify specific types of functional associations in pathway/genome databases. Bioinformatics. 2007;23(13):i205–11.

    Article  CAS  PubMed  Google Scholar 

  20. McKnight S. Gene switching by metabolic enzymes—how did you get on the invitation list? Cell. 2003;114(2):150–2.

    Article  CAS  PubMed  Google Scholar 

  21. Wong MS, Raab RM, Rigoutsos I, Stephanopoulos GN, Kelleher JK. Metabolic and transcriptional patterns accompanying glutamine depletion and repletion in mouse hepatoma cells: a model for physiological regulatory networks. Physiol Genomics. 2004;16(2):247–55.

    Article  CAS  PubMed  Google Scholar 

  22. Fan TW, Higashi RM, Lane AN. Integrating metabolomics and transcriptomics for probing SE anticancer mechanisms. Drug Metab Rev. 2006;38(4):707–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Romero .

Editor information

Editors and Affiliations

Glossary

API

Application program interface

DB

Data base

FRS

Frame representation system

GFP

Generic frame protocol

Isozyme

Variant form of an enzyme coded for by a separate allele. There is often tissue specific expression of isozymes, which may have significantly different kinetic properties from one another. In multisubunit enzymes, such as LDH two alleles give rise to a (statistical) mixture of enzymes, viz L4, L3M, L2M2, LM3, and M4, where L and M are the products of the two LDH genes.

MOD

Model organism database

Omics

The group of biological sub specialties whose descriptors end in “omics” such as genomics, proteomics and metabolomics spuriously described by adding this suffix to a field name such as gene → gene → genomics. The Omics refers to the systematic study of the phenomena: metabolomics is the study of the metabolome. Many possible subfields have been “omicized” (http://omics.org/index.php/Main_Page#Definition_of_Omics). A challenge is to integrate information and concepts obtained from these areas that frequently used very different platforms.

Ontology

The study of existence (philosophy). In informatics, and ontology is a data model that represents a set of concepts within a domain and the relationships between those concepts. It is used to reason about entities within that domain

PGDB

Pathway/genome database

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Romero, P. (2012). The HumanCyc Pathway-Genome Database and Pathway Tools Software as Tools for Imaging and Analyzing Metabolomics Data. In: Fan, TM., Lane, A., Higashi, R. (eds) The Handbook of Metabolomics. Methods in Pharmacology and Toxicology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-618-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-618-0_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-617-3

  • Online ISBN: 978-1-61779-618-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics