Skip to main content

DNA Methylation Changes in Cervical Cancers

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 863))

Abstract

Cervical carcinoma is one of the major causes of death in women worldwide. It is difficult to foresee a dramatic increase in cure rate even with the most optimal combination of cytotoxic drugs, surgery, and radiation; therefore, testing of molecular targeted therapies against this malignancy is highly desirable. Cervical cancer is a multistep process with accumulation of genetic and epigenetic alterations in regulatory genes, leading to activation of oncogenes and inactivation or loss of tumor suppressor genes (TSGs). In the last decade, in addition to genetic alterations, epigenetic inactivation of TSGs by promoter hypermethylation has been recognized as an important and alternative mechanism in tumorigenesis. In cervical cancer, epigenetic alterations can affect the expression of papillomavirus as well as host genes in relation to stages representing the multistep process of carcinogenesis. Here we discuss these epigenetic alterations in cervical cancer focusing on DNA methylation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Singh, M., Tyagi, S., Bhui, K., Prasad, S., and Shukla, Y. (2010) Regulation of cell growth through cell cycle arrest and apoptosis in HPV 16 positive human cervical cancer cells by tea polyphenols. Invest New Drugs 28, 216–224.

    PubMed  Google Scholar 

  2. Cain, J.M., Ngan, H., Garland, S., and Wright, T. (2009) Control of cervical cancer: women’s options and rights. Int J Gynaecol Obstet 106, 141–143

    PubMed  Google Scholar 

  3. Moore, D.H. (2006) Cervical cancer. Obstet Gynecol 107, 1152–1161.

    PubMed  Google Scholar 

  4. Petignat, P. and Roy, M. (2007) Diagnosis and management of cervical cancer. BMJ 335, 765–768.

    PubMed  Google Scholar 

  5. Cadron, I., Van Gorp, T., Amant, F., Leunen, K., Neven, P., and Vergote, I. (2007) Chemotherapy for recurrent cervical cancer. Gynecol Oncol 107, S113–S118.

    PubMed  CAS  Google Scholar 

  6. Baylin, S.B., and Ohm, J.E. (2006) Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6, 107–116.

    PubMed  CAS  Google Scholar 

  7. Egger, G., Liang, G., Aparicio, A., and Jones, P.A. (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457–463.

    PubMed  CAS  Google Scholar 

  8. Jones, P.A. and Baylin, S.B. (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3, 415–428.

    PubMed  CAS  Google Scholar 

  9. Eguchi, K., Kanai, Y., Kobayashi, K., and Hirohashi, S. (1997) DNA hypermethylation at the D17S5 locus in non-small cell lung cancers: its association with smoking history. Cancer Res 57, 4913–4915.

    PubMed  CAS  Google Scholar 

  10. Kanai, Y., Ushijima, S., Ochiai, A., Eguchi, K., Hui, A., and Hirohashi, S. (1998) DNA hypermethylation at the D17S5 locus is associated with gastric carcinogenesis. Cancer Lett 122, 135–141.

    PubMed  CAS  Google Scholar 

  11. Arai, E., Kanai, Y., Ushijima, S., Fujimoto, H., Mukai, K., and Hirohashi, S. (2006) Regional DNA hypermethylation and DNA methyltransferase (DNMT) 1 protein overexpression in both renal tumors and corresponding nontumorous renal tissues. Int J Cancer 119, 288–296.

    PubMed  CAS  Google Scholar 

  12. Kanai, Y., Ushijima, S., Tsuda, H., Sakamoto, M., Sugimura, T., and Hirohashi, S. (1996) Aberrant DNA methylation on chromosome 16 is an early event in hepatocarcinogenesis. Jpn J Cancer Res 87, 1210–1217.

    PubMed  CAS  Google Scholar 

  13. Sova, P., Feng, Q., Geiss, G., Wood, T., Strauss, R., Rudolf, V., Lieber, A., and Kiviat, N. (2006) Discovery of novel methylation biomarkers in cervical carcinoma by global demethylation and microarray analysis. Cancer Epidemiol Biomarkers Prev 15, 114–123

    PubMed  CAS  Google Scholar 

  14. Narayan, G., Arias-Pulido, H., Koul, S., Vargas, H., Zhang, F.F., Villella, J., Schneider, A., Terry, M.B., Mansukhani, M., and Murty, V.V. (2003) Frequent promoter methylation of CDH1, DAPK, RARB, and HIC1 genes in carcinoma of cervix uteri: its relationship to clinical outcome. Mol Cancer 2, 24.

    PubMed  Google Scholar 

  15. Feng, Q., Balasubramanian, A., Hawes, S.E., Toure, P., Sow, P.S., Dem, A., Dembele, B., Critchlow, C.W., Xi, L., Lu, H., et al. (2005a) Detection of hypermethylated genes in women with and without cervical neoplasia. J Natl Cancer Inst 97, 273–282.

    PubMed  CAS  Google Scholar 

  16. Steenbergen, R.D., Kramer, D., Braakhuis, B.J., Stern, P.L., Verheijen, R.H., Meijer, C.J., and Snijders, P.J. (2004) TSLC1 gene silencing in cervical cancer cell lines and cervical neoplasia. J Natl Cancer Inst 96, 294–305.

    PubMed  CAS  Google Scholar 

  17. zur Hausen, H. (1999) Papillomaviruses in human cancers. Proc Assoc Am Physicians 111, 581–587

    PubMed  CAS  Google Scholar 

  18. Munoz, N., Bosch, F.X., de Sanjose, S., Herrero, R., Castellsague, X., Shah, K.V., Snijders, P.J., and Meijer, C.J. (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348, 518–527.

    PubMed  Google Scholar 

  19. Walboomers, J.M., Jacobs, M.V., Manos, M.M., Bosch, F.X., Kummer, J.A., Shah, K.V., Snijders, P.J., Peto, J., Meijer, C.J., and Munoz, N. (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189, 12–19.

    PubMed  CAS  Google Scholar 

  20. Bosch, F.X., Manos, M.M., Munoz, N., Sherman, M., Jansen, A.M., Peto, J., Schiffman, M.H., Moreno, V., Kurman, R., and Shah, K.V. (1995). Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst 87, 796–802.

    PubMed  CAS  Google Scholar 

  21. Franco, E.L. (1996). Epidemiology of anogenital warts and cancer. Obstet Gynecol Clin North Am 23, 597–623.

    PubMed  CAS  Google Scholar 

  22. Ho, G.Y., Burk, R.D., Klein, S., Kadish, A.S., Chang, C.J., Palan, P., Basu, J., Tachezy, R., Lewis, R., and Romney, S. (1995) Persistent genital human papillomavirus infection as a risk factor for persistent cervical dysplasia. J Natl Cancer Inst 87, 1365–1371.

    PubMed  CAS  Google Scholar 

  23. Ho, G.Y., Bierman, R., Beardsley, L., Chang, C.J., and Burk, R.D. (1998). Natural history of cervicovaginal papillomavirus infection in young women. N Engl J Med 338, 423–428.

    PubMed  CAS  Google Scholar 

  24. Ho, G.Y., Palan, P.R., Basu, J., Romney, S.L., Kadish, A.S., Mikhail, M., Wassertheil-Smoller, S., Runowicz, C., and Burk, R.D. (1998) Viral characteristics of human papillomavirus infection and antioxidant levels as risk factors for cervical dysplasia. Int J Cancer 78, 594–599.

    PubMed  CAS  Google Scholar 

  25. Doorbar, J., Ely, S., Sterling, J., McLean, C., and Crawford, L. (1991) Specific interaction between HPV-16 E1-E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature 352, 824–827.

    PubMed  CAS  Google Scholar 

  26. Ueda, Y., Enomoto, T., Miyatake, T., Ozaki, K., Yoshizaki, T., Kanao, H., Ueno, Y., Nakashima, R., Shroyer, K.R., and Murata, Y. (2003) Monoclonal expansion with integration of high-risk type human papillomaviruses is an initial step for cervical carcinogenesis: association of clonal status and human papillomavirus infection with clinical outcome in cervical intraepithelial neoplasia. Lab Invest 83, 1517–1527.

    PubMed  Google Scholar 

  27. Harris, C.P., Lu, X.Y., Narayan, G., Singh, B., Murty, V.V., and Rao, P.H. (2003). Comprehensive molecular cytogenetic characterization of cervical cancer cell lines. Genes Chromosomes Cancer 36, 233–241.

    PubMed  CAS  Google Scholar 

  28. Atkin, N.B. and Baker, M.C. (1997) DNA ploidy of cervical intraepithelial neoplasia (CIN). Cancer Genet Cytogenet 94, 151–152.

    PubMed  CAS  Google Scholar 

  29. Lai, H.C., Lin, Y.W., Huang, T.H., Yan, P., Huang, R.L., Wang, H.C., Liu, J., Chan, M.W., Chu, T.Y., Sun, C.A., et al. (2008) Identification of novel DNA methylation markers in cervical cancer. Int J Cancer 123, 161–167.

    PubMed  CAS  Google Scholar 

  30. Kalantari, M., Calleja-Macias, I.E., Tewari, D., Hagmar, B., Lie, K., Barrera-Saldana, H.A., Wiley, D.J., and Bernard, H.U. (2004) Conserved methylation patterns of human papillomavirus type 16 DNA in asymptomatic infection and cervical neoplasia. J Virol 78, 12762–12772.

    PubMed  CAS  Google Scholar 

  31. Turan, T., Kalantari, M., Calleja-Macias, I.E., Cubie, H.A., Cuschieri, K., Villa, L.L., Skomedal, H., Barrera-Saldana, H.A., and Bernard, H.U. (2006) Methylation of the human papillomavirus-18L1 gene: a biomarker of neoplastic progression? Virology 349, 175–183.

    PubMed  CAS  Google Scholar 

  32. Badal, S., Badal, V., Calleja-Macias, I.E., Kalantari, M., Chuang, L.S., Li, B.F., and Bernard, H.U. (2004) The human papillomavirus-18 genome is efficiently targeted by cellular DNA methylation. Virology 324, 483–492.

    PubMed  CAS  Google Scholar 

  33. Baylin, S.B., Herman, J.G., Graff, J.R., Vertino, P.M., and Issa, J.P. (1998) Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 72, 141–196.

    PubMed  CAS  Google Scholar 

  34. Costello, J.F., Fruhwald, M.C., Smiraglia, D.J., Rush, L.J., Robertson, G.P., Gao, X., Wright, F.A., Feramisco, J.D., Peltomaki, P., Lang, J.C., et al. (2000) Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 24, 132–138.

    PubMed  CAS  Google Scholar 

  35. Li, E., Bestor, T.H. and Jaenisch, R. (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926.

    PubMed  CAS  Google Scholar 

  36. Bird, A.P. and Wolffe, A.P. (1999) Methylation-induced repression—belts, braces, and chromatin. Cell 99, 451–454.

    PubMed  CAS  Google Scholar 

  37. Baylin, S.B. (2002) Mechanisms underlying epigenetically mediated gene silencing in cancer. Semin Cancer Biol 12, 331–337.

    PubMed  CAS  Google Scholar 

  38. Feinberg, A.P. and Tycko, B. (2004) The history of cancer epigenetics. Nat Rev Cancer 4, 143–153.

    PubMed  CAS  Google Scholar 

  39. Underwood, S.M., Ramsay-Johnson, E., Dean, A., Russ, J., and Ivalis, R. (2009) Expanding the scope of nursing research in low resource and middle resource countries, regions, and states focused on cervical cancer prevention, early detection, and control. J Natl Black Nurses Assoc 20, 42–54.

    PubMed  Google Scholar 

  40. Duenas-Gonzalez, A., Lizano, M., Candelaria, M., Cetina, L., Arce, C., and Cervera, E. (2005) Epigenetics of cervical cancer. An overview and therapeutic perspectives. Mol Cancer 4, 38.

    PubMed  Google Scholar 

  41. Thompson, C.B. (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462.

    PubMed  CAS  Google Scholar 

  42. Wyllie, A.H., Kerr, J.F., and Currie, A.R. (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68, 251–306.

    PubMed  CAS  Google Scholar 

  43. Sen, S. and D’Incalci, M. (1992). Apoptosis. Biochemical events and relevance to cancer chemotherapy. FEBS Lett 307, 122–127.

    PubMed  CAS  Google Scholar 

  44. Deiss, L.P., Feinstein, E., Berissi, H., Cohen, O., and Kimchi, A. (1995) Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev 9, 15–30.

    PubMed  CAS  Google Scholar 

  45. Cohen, O., Feinstein, E., and Kimchi, A. (1997) DAP-kinase is a Ca2+/calmodulin-dependent, cytoskeletal-associated protein kinase, with cell death-inducing functions that depend on its catalytic activity. EMBO J 16, 998–1008.

    PubMed  CAS  Google Scholar 

  46. Inbal, B., Cohen, O., Polak-Charcon, S., Kopolovic, J., Vadai, E., Eisenbach, L., and Kimchi, A. (1997) DAP kinase links the control of apoptosis to metastasis. Nature 390, 180–184.

    PubMed  CAS  Google Scholar 

  47. Dong, S.M., Kim, H.S., Rha, S.H., and Sidransky, D. (2001) Promoter hypermethylation of multiple genes in carcinoma of the uterine cervix. Clin Cancer Res 7, 1982–1986.

    PubMed  CAS  Google Scholar 

  48. Kang, S., Kim, J.W., Kang, G.H., Lee, S., Park, N.H., Song, Y.S., Park, S.Y., Kang, S.B., and Lee, H.P. (2006) Comparison of DNA hypermethylation patterns in different types of uterine cancer: cervical squamous cell carcinoma, cervical adenocarcinoma and endometrial adenocarcinoma. Int J Cancer 118, 2168–2171.

    PubMed  CAS  Google Scholar 

  49. Shivapurkar, N., Sherman, M.E., Stastny, V., Echebiri, C., Rader, J.S., Nayar, R., Bonfiglio, T.A., Gazdar, A.F., and Wang, S.S. (2007) Evaluation of candidate methylation markers to detect cervical neoplasia. Gynecol Oncol 107, 549–553.

    PubMed  CAS  Google Scholar 

  50. Wisman, G.B., Nijhuis, E.R., Hoque, M.O., Reesink-Peters, N., Koning, A.J., Volders, H.H., Buikema, H.J., Boezen, H.M., Hollema, H., Schuuring, E., et al. (2006) Assessment of gene promoter hypermethylation for detection of cervical neoplasia. Int J Cancer 119, 1908–1914.

    PubMed  CAS  Google Scholar 

  51. Yang, H.J., Liu, V.W., Wang, Y., Chan, K.Y., Tsang, P.C., Khoo, U.S., Cheung, A.N., and Ngan, H.Y. (2004) Detection of hypermethylated genes in tumor and plasma of cervical cancer patients. Gynecol Oncol 93, 435–440.

    PubMed  CAS  Google Scholar 

  52. Henken, F.E., Wilting, S.M., Overmeer, R.M., van Rietschoten, J.G., Nygren, A.O., Errami, A., Schouten, J.P., Meijer, C.J., Snijders, P.J., and Steenbergen, R.D. (2007) Sequential gene promoter methylation during HPV-induced cervical carcinogenesis. Br J Cancer 97, 1457–1464.

    PubMed  CAS  Google Scholar 

  53. Vousden, K.H. (2000). p53: death star. Cell 103, 691–694.

    PubMed  CAS  Google Scholar 

  54. Harris, S.L. and Levine, A.J. (2005) The p53 pathway: positive and negative feedback loops. Oncogene 24, 2899–2908.

    PubMed  CAS  Google Scholar 

  55. Yang, A., Kaghad, M., Wang, Y., Gillett, E., Fleming, M.D., Dotsch, V., Andrews, N.C., Caput, D., and McKeon, F. (1998) p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 2, 305–316.

    PubMed  CAS  Google Scholar 

  56. Zhu, J., Jiang, J., Zhou, W., and Chen, X. (1998) The potential tumor suppressor p73 differentially regulates cellular p53 target genes. Cancer Res 58, 5061–5065.

    PubMed  CAS  Google Scholar 

  57. Widschwendter, A., Muller, H.M., Hubalek, M.M., Wiedemair, A., Fiegl, H., Goebel, G., Mueller-Holzner, E., Marth, C., and Widschwendter, M. (2004) Methylation status and expression of human telomerase reverse transcriptase in ovarian and cervical cancer. Gynecol Oncol 93, 407–416.

    PubMed  CAS  Google Scholar 

  58. Snijders, P.J., van Duin, M., Walboomers, J.M., Steenbergen, R.D., Risse, E.K., Helmerhorst, T.J., Verheijen, R.H., and Meijer, C.J. (1998) Telomerase activity exclusively in cervical carcinomas and a subset of cervical intraepithelial neoplasia grade III lesions: strong association with elevated messenger RNA levels of its catalytic subunit and high-risk human papillomavirus DNA. Cancer Res 58, 3812–3818.

    PubMed  CAS  Google Scholar 

  59. Nakano, K., Watney, E., and McDougall, J.K. (1998) Telomerase activity and expression of telomerase RNA component and telomerase catalytic subunit gene in cervical cancer. Am J Pathol 153, 857–864.

    PubMed  CAS  Google Scholar 

  60. Takakura, M., Kyo, S., Kanaya, T., Tanaka, M., and Inoue, M. (1998) Expression of human telomerase subunits and correlation with telomerase activity in cervical cancer. Cancer Res 58, 1558–1561.

    PubMed  CAS  Google Scholar 

  61. Wisman, G.B., Knol, A.J., Helder, M.N., Krans, M., de Vries, E.G., Hollema, H., de Jong, S., and van der Zee, A.G. (2001) Telomerase in relation to clinicopathologic prognostic factors and survival in cervical cancer. Int J Cancer 91, 658–664.

    PubMed  CAS  Google Scholar 

  62. Guilleret, I. and Benhattar, J. (2003) Demethylation of the human telomerase catalytic subunit (hTERT) gene promoter reduced hTERT expression and telomerase activity and shortened telomeres. Exp Cell Res 289, 326–334.

    PubMed  CAS  Google Scholar 

  63. Widschwendter, A., Muller, H.M., Hubalek, M.M., Wiedemair, A., Fiegl, H., Goebel, G., Mueller-Holzner, E., Marth, C., and Widschwendter, M. (2004) Methylation status and expression of human telomerase reverse transcriptase in ovarian and cervical cancer. Gynecol Oncol 93, 407–416.

    PubMed  CAS  Google Scholar 

  64. Szliszka, E. and Krol, W. (2011) The role of dietary polyphenols in tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-induced apoptosis for cancer chemoprevention. Eur J Cancer Prev 20, 63–69.

    PubMed  CAS  Google Scholar 

  65. Ashkenazi, A. and Dixit, V.M. (1999) Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11, 255–260.

    PubMed  CAS  Google Scholar 

  66. Ozoren, N. and El-Deiry, W.S. (2003) Cell surface Death Receptor signaling in normal and cancer cells. Semin Cancer Biol 13, 135–147.

    PubMed  Google Scholar 

  67. Shivapurkar, N., Toyooka, S., Toyooka, K.O., Reddy, J., Miyajima, K., Suzuki, M., Shigematsu, H., Takahashi, T., Parikh, G., Pass, H.I., et al. (2004) Aberrant methylation of trail decoy receptor genes is frequent in multiple tumor types. Int J Cancer 109, 786–792.

    PubMed  CAS  Google Scholar 

  68. Nakashima, R., Fujita, M., Enomoto, T., Haba, T., Yoshino, K., Wada, H., Kurachi, H., Sasaki, M., Wakasa, K., Inoue, M., et al. (1999) Alteration of p16 and p15 genes in human uterine tumours. Br J Cancer 80, 458–467.

    PubMed  CAS  Google Scholar 

  69. Bressac-de Paillerets, B. (1994) [Discovery of a new gene frequently inactivated in human cancers: protein p16, a cell cycle regulator]. Bull Cancer 81, 853–856.

    PubMed  CAS  Google Scholar 

  70. Nuovo, G.J., Plaia, T.W., Belinsky, S.A., Baylin, S.B., and Herman, J.G. (1999) In situ detection of the hypermethylation-induced inactivation of the p16 gene as an early event in oncogenesis. Proc Natl Acad Sci U S A 96, 12754–12759.

    PubMed  CAS  Google Scholar 

  71. Virmani, A.K., Muller, C., Rathi, A., Zoechbauer-Mueller, S., Mathis, M., and Gazdar, A.F. (2001).Aberrant methylation during cervical carcinogenesis. Clin Cancer Res 7, 584–589.

    PubMed  CAS  Google Scholar 

  72. Lea, J.S., Coleman, R., Kurien, A., Schorge, J.O., Miller, D.S., Minna, J.D., and Muller, C.Y. (2004) Aberrant p16 methylation is a biomarker for tobacco exposure in cervical squamous cell carcinogenesis. Am J Obstet Gynecol 190, 674–679.

    PubMed  CAS  Google Scholar 

  73. Merlo, A., Herman, J.G., Mao, L., Lee, D.J., Gabrielson, E., Burger, P.C., Baylin, S.B., and Sidransky, D. (1995) 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1, 686–692.

    PubMed  CAS  Google Scholar 

  74. Otterson, G.A., Khleif, S.N., Chen, W., Coxon, A.B., and Kaye, F.J. (1995) CDKN2 gene silencing in lung cancer by DNA hypermethylation and kinetics of p16INK4 protein induction by 5-aza 2′deoxycytidine. Oncogene 11, 1211–1216.

    PubMed  CAS  Google Scholar 

  75. Ishikawa, M., Fujii, T., Saito, M., Nindl, I., Ono, A., Kubushiro, K., Tsukazaki, K., Mukai, M., and Nozawa, S. (2006) Overexpression of p16 INK4a as an indicator for human papillomavirus oncogenic activity in cervical squamous neoplasia. Int J Gynecol Cancer 16, 347–353.

    PubMed  CAS  Google Scholar 

  76. Donninger, H., Vos, M.D., and Clark, G.J. (2007) The RASSF1A tumor suppressor. J Cell Sci 120, 3163–3172.

    PubMed  CAS  Google Scholar 

  77. Liu, L., Tommasi, S., Lee, D.H., Dammann, R., and Pfeifer, G.P. (2003) Control of microtubule stability by the RASSF1A tumor suppressor. Oncogene 22, 8125–8136.

    PubMed  CAS  Google Scholar 

  78. Vos, M.D., Martinez, A., Elam, C., Dallol, A., Taylor, B.J., Latif, F., and Clark, G.J. (2004) A role for the RASSF1A tumor suppressor in the regulation of tubulin polymerization and genomic stability. Cancer Res 64, 4244–4250.

    PubMed  CAS  Google Scholar 

  79. Shivakumar, L., Minna, J., Sakamaki, T., Pestell, R., and White, M.A. (2002) The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation. Mol Cell Biol 22, 4309–4318.

    PubMed  CAS  Google Scholar 

  80. Whang, Y.M., Kim, Y.H., Kim, J.S., and Yoo, Y.D. (2005) RASSF1A suppresses the c-Jun-NH2-kinase pathway and inhibits cell cycle progression. Cancer Res 65, 3682–3690.

    PubMed  CAS  Google Scholar 

  81. Vos, M.D., Ellis, C.A., Bell, A., Birrer, M.J., and Clark, G.J. (2000) Ras uses the novel tumor suppressor RASSF1 as an effector to mediate apoptosis. J Biol Chem 275, 35669–35672.

    PubMed  CAS  Google Scholar 

  82. Vos, M.D., Dallol, A., Eckfeld, K., Allen, N.P., Donninger, H., Hesson, L.B., Calvisi, D., Latif, F., and Clark, G.J. (2006) The RASSF1A tumor suppressor activates Bax via MOAP-1. J Biol Chem 281, 4557–4563.

    PubMed  CAS  Google Scholar 

  83. Matallanas, D., Romano, D., Yee, K., Meissl, K., Kucerova, L., Piazzolla, D., Baccarini, M., Vass, J.K., Kolch, W., and O’Neill, E. (2007) RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein. Mol Cell 27, 962–975.

    PubMed  CAS  Google Scholar 

  84. Dallol, A., Agathanggelou, A., Tommasi, S., Pfeifer, G.P., Maher, E.R., and Latif, F. (2005) Involvement of the RASSF1A tumor suppressor gene in controlling cell migration. Cancer Res 65, 7653–7659.

    PubMed  CAS  Google Scholar 

  85. Cohen, Y., Singer, G., Lavie, O., Dong, S.M., Beller, U., and Sidransky, D. (2003) The RASSF1A tumor suppressor gene is commonly inactivated in adenocarcinoma of the uterine cervix. Clin Cancer Res 9, 2981–2984.

    PubMed  CAS  Google Scholar 

  86. Kuzmin, I., Liu, L., Dammann, R., Geil, L., Stanbridge, E.J., Wilczynski, S.P., Lerman, M.I., and Pfeifer, G.P. (2003) Inactivation of RAS association domain family 1A gene in cervical carcinomas and the role of human papillomavirus infection. Cancer Res 63, 1888–1893.

    PubMed  CAS  Google Scholar 

  87. Yu, M.Y., Tong, J.H., Chan, P.K., Lee, T.L., Chan, M.W., Chan, A.W., Lo, K.W., and To, K.F. (2003) Hypermethylation of the tumor suppressor gene RASSFIA and frequent concomitant loss of heterozygosity at 3p21 in cervical cancers. Int J Cancer 105, 204–209.

    PubMed  CAS  Google Scholar 

  88. Kang, S., Kim, J.W., Kang, G.H., Park, N.H., Song, Y.S., Kang, S.B., and Lee, H.P. (2005) Polymorphism in folate- and methionine-metabolizing enzyme and aberrant CpG island hypermethylation in uterine cervical cancer. Gynecol Oncol 96, 173–180.

    PubMed  CAS  Google Scholar 

  89. Kang, S., Kim, H.S., Seo, S.S., Park, S.Y., Sidransky, D., and Dong, S.M. (2007) Inverse correlation between RASSF1A hypermethylation, KRAS and BRAF mutations in cervical adenocarcinoma. Gynecol Oncol 105, 662–666.

    PubMed  CAS  Google Scholar 

  90. Lai, H.C., Lin, Y.W., Chang, C.C., Wang, H.C., Chu, T.W., Yu, M.H., and Chu, T.Y. (2007) Hypermethylation of two consecutive tumor suppressor genes, BLU and RASSF1A, located at 3p21.3 in cervical neoplasias. Gynecol Oncol 104, 629–635.

    PubMed  CAS  Google Scholar 

  91. Matsuda, Y., Schlange, T., Oakeley, E.J., Boulay, A., and Hynes, N.E. (2009) WNT signaling enhances breast cancer cell motility and blockade of the WNT pathway by sFRP1 suppresses MDA-MB-231 xenograft growth. Breast Cancer Res 11, R32.

    PubMed  Google Scholar 

  92. Deng, Y.H., Pu, X.X., Huang, M.J., Xiao, J., Zhou, J.M., Lin, T.Y., and Lin, E.H. (2010) 5-Fluorouracil upregulates the activity of Wnt signaling pathway in CD133-positive colon cancer stem-like cells. Chin J Cancer 29, 810–815.

    PubMed  CAS  Google Scholar 

  93. Hamada, F. (2009). [Wnt signaling and cancer]. Kaibogaku Zasshi 84, 111–112.

    PubMed  Google Scholar 

  94. Takigawa, Y. and Brown, A.M. (2008) Wnt signaling in liver cancer. Curr Drug Targets 9, 1013–1024.

    PubMed  CAS  Google Scholar 

  95. Katoh, M. (2005). WNT/PCP signaling pathway and human cancer (review). Oncol Rep 14, 1583–1588.

    PubMed  CAS  Google Scholar 

  96. Samowitz, W.S., Slattery, M.L., Sweeney, C., Herrick, J., Wolff, R.K., and Albertsen, H. (2007) APC mutations and other genetic and epigenetic changes in colon cancer. Mol Cancer Res 5, 165–170.

    PubMed  CAS  Google Scholar 

  97. Sarrio, D., Moreno-Bueno, G., Hardisson, D., Sanchez-Estevez, C., Guo, M., Herman, J.G., Gamallo, C., Esteller, M., and Palacios, J. (2003) Epigenetic and genetic alterations of APC and CDH1 genes in lobular breast cancer: relationships with abnormal E-cadherin and catenin expression and microsatellite instability. Int J Cancer 106, 208–215.

    PubMed  CAS  Google Scholar 

  98. Yang, H.J., Liu, V.W., Wang, Y., Tsang, P.C., and Ngan, H.Y. (2006) Differential DNA methylation profiles in gynecological cancers and correlation with clinico-pathological data. BMC Cancer 6, 212.

    PubMed  Google Scholar 

  99. Lynch, E.D., Ostermeyer, E.A., Lee, M.K., Arena, J.F., Ji, H., Dann, J., Swisshelm, K., Suchard, D., MacLeod, P.M., Kvinnsland, S., et al. (1997) Inherited mutations in PTEN that are associated with breast cancer, Cowden disease, and juvenile polyposis. Am J Hum Genet 61, 1254–1260.

    PubMed  CAS  Google Scholar 

  100. Li, L. and Ross, A.H. (2007). Why is PTEN an important tumor suppressor? J Cell Biochem 102, 1368–1374.

    PubMed  CAS  Google Scholar 

  101. Ramaswamy, S., Nakamura, N., Vazquez, F., Batt, D.B., Perera, S., Roberts, T.M., and Sellers, W.R. (1999) Regulation of G1 progression by the PTEN tumor suppressor protein is linked to inhibition of the phosphatidylinositol 3-kinase/Akt pathway. Proc Natl Acad Sci U S A 96, 2110–2115.

    PubMed  CAS  Google Scholar 

  102. Tamura, M., Gu, J., Takino, T., and Yamada, K.M. (1999). Tumor suppressor PTEN inhibition of cell invasion, migration, and growth: differential involvement of focal adhesion kinase and p130Cas. Cancer Res 59, 442–449.

    PubMed  CAS  Google Scholar 

  103. Li, D.M. and Sun, H. (1998) PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. Proc Natl Acad Sci U S A 95, 15406–15411.

    PubMed  CAS  Google Scholar 

  104. Rhei, E., Kang, L., Bogomolniy, F., Federici, M.G., Borgen, P.I., and Boyd, J. (1997). Mutation analysis of the putative tumor suppressor gene PTEN/MMAC1 in primary breast carcinomas. Cancer Res 57, 3657–3659.

    PubMed  CAS  Google Scholar 

  105. Teng, D.H., Hu, R., Lin, H., Davis, T., Iliev, D., Frye, C., Swedlund, B., Hansen, K.L., Vinson, V.L., Gumpper, K.L., et al. (1997) MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res 57, 5221–5225.

    PubMed  CAS  Google Scholar 

  106. Gustafson, K.S., Furth, E.E., Heitjan, D.F., Fansler, Z.B., and Clark, D.P. (2004) DNA methylation profiling of cervical squamous intraepithelial lesions using liquid-based cytology specimens: an approach that utilizes receiver-operating characteristic analysis. Cancer 102, 259–268.

    PubMed  CAS  Google Scholar 

  107. Cheung, T.H., Lo, K.W., Yim, S.F., Chan, L.K., Heung, M.S., Chan, C.S., Cheung, A.Y., Chung, T.K., and Wong, Y.F. (2004) Epigenetic and genetic alternation of PTEN in cervical neoplasm. Gynecol Oncol 93, 621–627.

    PubMed  CAS  Google Scholar 

  108. Pegg, A.E. and Byers, T.L. (1992) Repair of DNA containing O6-alkylguanine. FASEB J 6, 2302–2310.

    PubMed  CAS  Google Scholar 

  109. Jacinto, F.V. and Esteller, M. (2007) MGMT hypermethylation: a prognostic foe, a predictive friend. DNA Repair (Amst) 6, 1155–1160.

    CAS  Google Scholar 

  110. Esteller, M. and Herman, J.G. (2004) Generating mutations but providing chemosensitivity: the role of O6-methylguanine DNA methyltransferase in human cancer. Oncogene 23, 1–8.

    PubMed  CAS  Google Scholar 

  111. Zochbauer-Muller, S., Fong, K.M., Virmani, A.K., Geradts, J., Gazdar, A.F., and Minna, J.D. (2001) Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res 61, 249–255.

    PubMed  CAS  Google Scholar 

  112. Oh, K., Redston, M., and Odze, R.D. (2005) Support for hMLH1 and MGMT silencing as a mechanism of tumorigenesis in the hyperplastic-adenoma-carcinoma (serrated) carcinogenic pathway in the colon. Hum Pathol 36, 101–111.

    PubMed  CAS  Google Scholar 

  113. Preuss, I., Haas, S., Eichhorn, U., Eberhagen, I., Kaufmann, M., Beck, T., Eibl, R.H., Dall, P., Bauknecht, T., Hengstler, J., et al. (1996) Activity of the DNA repair protein O6-methylguanine-DNA methyltransferase in human tumor and corresponding normal tissue. Cancer Detect Prev 20, 130–136.

    PubMed  CAS  Google Scholar 

  114. Hengstler, J.G., Tanner, B., Moller, L., Meinert, R., and Kaina, B. (1999) Activity of O(6)-methylguanine-DNA methyltransferase in relation to p53 status and therapeutic response in ovarian cancer. Int J Cancer 84, 388–395.

    PubMed  CAS  Google Scholar 

  115. Margison, G.P., Povey, A.C., Kaina, B., and Santibanez Koref, M.F. (2003) Variability and regulation of O6-alkylguanine-DNA alkyltransferase. Carcinogenesis 24, 625–635.

    PubMed  CAS  Google Scholar 

  116. Zambrano, P., Segura-Pacheco, B., Perez-Cardenas, E., Cetina, L., Revilla-Vazquez, A., Taja-Chayeb, L., Chavez-Blanco, A., Angeles, E., Cabrera, G., Sandoval, K., et al. (2005) A phase I study of hydralazine to demethylate and reactivate the expression of tumor suppressor genes. BMC Cancer 5, 44.

    PubMed  Google Scholar 

  117. Narayan, G., Arias-Pulido, H., Nandula, S.V., Basso, K., Sugirtharaj, D.D., Vargas, H., Mansukhani, M., Villella, J., Meyer, L., Schneider, A., et al. (2004) Promoter hypermethylation of FANCF: disruption of Fanconi Anemia-BRCA pathway in cervical cancer. Cancer Res 64, 2994–2997.

    PubMed  CAS  Google Scholar 

  118. Widschwendter, A., Gattringer, C., Ivarsson, L., Fiegl, H., Schneitter, A., Ramoni, A., Muller, H.M., Wiedemair, A., Jerabek, S., Muller-Holzner, E., et al. (2004) Analysis of aberrant DNA methylation and human papillomavirus DNA in cervicovaginal specimens to detect invasive cervical cancer and its precursors. Clin Cancer Res 10, 3396–3400.

    PubMed  CAS  Google Scholar 

  119. Gumbiner, B.M. (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6, 622–634.

    PubMed  CAS  Google Scholar 

  120. Koriyama, C., Akiba, S., Itoh, T., Sueyoshi, K., Minakami, Y., Corvalan, A., Yonezawa, S., and Eizuru, Y. (2007) E-cadherin and beta-catenin expression in Epstein-Barr virus-associated gastric carcinoma and their prognostic significance. World J Gastroenterol 13, 3925–3931.

    PubMed  Google Scholar 

  121. Branca, M., Giorgi, C., Ciotti, M., Santini, D., Di Bonito, L., Costa, S., Benedetto, A., Bonifacio, D., Di Bonito, P., Paba, P., et al. (2006) Down-regulation of E-cadherin is closely associated with progression of cervical intraepithelial neoplasia (CIN), but not with high-risk human papillomavirus (HPV) or disease outcome in cervical cancer. Eur J Gynaecol Oncol 27, 215–223.

    PubMed  CAS  Google Scholar 

  122. Cavallaro, U. and Christofori, G. (2004) Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 4, 118–132.

    PubMed  CAS  Google Scholar 

  123. Ren, C.C., Miao, X.H., Yang, B., Zhao, L., Sun, R., and Song, W.Q. (2006) Methylation status of the fragile histidine triad and E-cadherin genes in plasma of cervical cancer patients. Int J Gynecol Cancer 16, 1862–1867.

    PubMed  CAS  Google Scholar 

  124. Widschwendter, A., Ivarsson, L., Blassnig, A., Muller, H.M., Fiegl, H., Wiedemair, A., Muller-Holzner, E., Goebel, G., Marth, C., and Widschwendter, M. (2004). CDH1 and CDH13 methylation in serum is an independent prognostic marker in cervical cancer patients. Int J Cancer 109, 163–166.

    PubMed  CAS  Google Scholar 

  125. Hendricks, D.T., Taylor, R., Reed, M., and Birrer, M.J. (1997) FHIT gene expression in human ovarian, endometrial, and cervical cancer cell lines. Cancer Res 57, 2112–2115.

    PubMed  CAS  Google Scholar 

  126. Birrer, M.J., Hendricks, D., Farley, J., Sundborg, M.J., Bonome, T., Walts, M.J., and Geradts, J. (1999) Abnormal Fhit expression in malignant and premalignant lesions of the cervix. Cancer Res 59, 5270–5274.

    PubMed  CAS  Google Scholar 

  127. Tsao, I. and Atramentova, L.A. (2009) [Genetic and epigenetic changes of FHIT gene in patients with esophageal cancer]. Tsitol Genet 43, 40–44.

    PubMed  Google Scholar 

  128. Pavelic, K., Krizanac, S., Cacev, T., Hadzija, M.P., Radosevic, S., Crnic, I., Levanat, S., and Kapitanovic, S. (2001) Aberration of FHIT gene is associated with increased tumor proliferation and decreased apoptosis-clinical evidence in lung and head and neck carcinomas. Mol Med 7, 442–453.

    PubMed  CAS  Google Scholar 

  129. Wang, X., Yuan, L., Zheng, H., Liu, J., Huang, X., Wu, L., Yuan, H., and Zhao, J. (2009) [Expression of FHIT Protein in Lung Cancer by Cell Array.]. Zhongguo Fei Ai Za Zhi 12, 131–134.

    PubMed  CAS  Google Scholar 

  130. Li, Y.Z. and Zhao, P. (2009). [Expressions of cyclinB1, FHIT and Ki-67 in 336 gastric carcinoma patients and their clinicopathologic significance]. Zhonghua Yi Xue Za Zhi 89, 2337–2341.

    PubMed  CAS  Google Scholar 

  131. Syeed, N., Husain, S.A., Sameer, A.S., Chowdhri, N.A., and Siddiqi, M.A. (2011) Mutational and promoter hypermethylation status of FHIT gene in breast cancer patients of Kashmir. Mutat Res 707, 1–8.

    PubMed  CAS  Google Scholar 

  132. Wu, Q., Shi, H., Suo, Z., and Nesland, J.M. (2003) 5′-CpG island methylation of the FHIT gene is associated with reduced protein expression and higher clinical stage in cervical carcinomas. Ultrastruct Pathol 27, 417–422.

    PubMed  Google Scholar 

  133. Wistuba, II, Montellano, F.D., Milchgrub, S., Virmani, A.K., Behrens, C., Chen, H., Ahmadian, M., Nowak, J.A., Muller, C., Minna, J.D., et al. (1997) Deletions of chromosome 3p are frequent and early events in the pathogenesis of uterine cervical carcinoma. Cancer Res 57, 3154–3158.

    PubMed  CAS  Google Scholar 

  134. Larson, A.A., Kern, S., Curtiss, S., Gordon, R., Cavenee, W.K., and Hampton, G.M. (1997) High resolution analysis of chromosome 3p alterations in cervical carcinoma. Cancer Res 57, 4082–4090.

    PubMed  CAS  Google Scholar 

  135. Widschwendter, M., Berger, J., Hermann, M., Muller, H.M., Amberger, A., Zeschnigk, M., Widschwendter, A., Abendstein, B., Zeimet, A.G., Daxenbichler, G., et al. (2000) Methylation and silencing of the retinoic acid receptor-beta2 gene in breast cancer. J Natl Cancer Inst 92, 826–832.

    PubMed  CAS  Google Scholar 

  136. Khan, M.A., Jenkins, G.R., Tolleson, W.H., Creek, K.E., and Pirisi, L. (1993) Retinoic acid inhibition of human papillomavirus type 16-mediated transformation of human keratinocytes. Cancer Res 53, 905–909.

    PubMed  CAS  Google Scholar 

  137. Meyskens, F.L., Jr., Surwit, E., Moon, T.E., Childers, J.M., Davis, J.R., Dorr, R.T., Johnson, C.S., and Alberts, D.S. (1994) Enhancement of regression of cervical intraepithelial neoplasia II (moderate dysplasia) with topically applied all-trans-retinoic acid: a randomized trial. J Natl Cancer Inst 86, 539–543.

    PubMed  Google Scholar 

  138. Ivanova, T., Petrenko, A., Gritsko, T., Vinokourova, S., Eshilev, E., Kobzeva, V., Kisseljov, F., and Kisseljova, N. (2002) Methylation and silencing of the retinoic acid receptor-beta 2 gene in cervical cancer. BMC Cancer 2, 4.

    PubMed  Google Scholar 

  139. Pehlivan, S., Artac, M., Sever, T., Bozcuk, H., Kilincarslan, C., and Pehlivan, M. (2010). Gene methylation of SFRP2, P16, DAPK1, HIC1, and MGMT and KRAS mutations in sporadic colorectal cancer. Cancer Genet Cytogenet 201, 128–132.

    PubMed  CAS  Google Scholar 

  140. Kekeeva, T.V., Popova, O.P., Shegai, P.V., Alekseev, B., Adnreeva, I., Zaletaev, D.V., and Nemtsova, M.V. (2007) [Abberant methylation of p16, HIC1, N33 and GSTP1 genes in tumor epithelium and tumor-associated stromal cells of prostate cancer]. Mol Biol (Mosk) 41, 79–85.

    CAS  Google Scholar 

  141. Rathi, A., Virmani, A.K., Harada, K., Timmons, C.F., Miyajima, K., Hay, R.J., Mastrangelo, D., Maitra, A., Tomlinson, G.E., and Gazdar, A.F. (2003) Aberrant methylation of the HIC1 promoter is a frequent event in specific pediatric neoplasms. Clin Cancer Res 9, 3674–3678.

    PubMed  CAS  Google Scholar 

  142. Chen, W.Y., Zeng, X., Carter, M.G., Morrell, C.N., Chiu Yen, R.W., Esteller, M., Watkins, D.N., Herman, J.G., Mankowski, J.L., and Baylin, S.B. (2003) Heterozygous disruption of Hic1 predisposes mice to a gender-dependent spectrum of malignant tumors. Nat Genet 33, 197202.

    PubMed  CAS  Google Scholar 

  143. Chen, W., Cooper, T.K., Zahnow, C.A., Overholtzer, M., Zhao, Z., Ladanyi, M., Karp, J.E., Gokgoz, N., Wunder, J.S., Andrulis, I.L., et al. (2004) Epigenetic and genetic loss of Hic1 function accentuates the role of p53 in tumorigenesis. Cancer Cell 6, 387–398.

    PubMed  CAS  Google Scholar 

  144. Kuramochi, M., Fukuhara, H., Nobukuni, T., Kanbe, T., Maruyama, T., Ghosh, H.P., Pletcher, M., Isomura, M., Onizuka, M., Kitamura, T., et al. (2001) TSLC1 is a tumor-suppressor gene in human non-small-cell lung cancer. Nat Genet 27, 427–430.

    CAS  Google Scholar 

  145. Fukuhara, H., Kuramochi, M., Fukami, T., Kasahara, K., Furuhata, M., Nobukuni, T., Maruyama, T., Isogai, K., Sekiya, T., Shuin, T., et al. (2002) Promoter methylation of TSLC1 and tumor suppression by its gene product in human prostate cancer. Jpn J Cancer Res 93, 605–609.

    PubMed  CAS  Google Scholar 

  146. Allinen, M., Peri, L., Kujala, S., Lahti-Domenici, J., Outila, K., Karppinen, S.M., Launonen, V., and Winqvist, R. (2002) Analysis of 11q21-24 loss of heterozygosity candidate target genes in breast cancer: indications of TSLC1 promoter hypermethylation. Genes Chromosomes Cancer 34, 384–389.

    PubMed  CAS  Google Scholar 

  147. Ito, T., Shimada, Y., Hashimoto, Y., Kaganoi, J., Kan, T., Watanabe, G., Murakami, Y., and Imamura, M. (2003) Involvement of TSLC1 in progression of esophageal squamous cell carcinoma. Cancer Res 63, 6320–6326.

    PubMed  CAS  Google Scholar 

  148. Jansen, M., Fukushima, N., Rosty, C., Walter, K., Altink, R., Heek, T.V., Hruban, R., Offerhaus, J.G., and Goggins, M. (2002) Aberrant methylation of the 5′ CpG island of TSLC1 is common in pancreatic ductal adenocarcinoma and is first manifest in high-grade PanlNs. Cancer Biol Ther 1, 293–296.

    PubMed  CAS  Google Scholar 

  149. Watabe, K., Ito, A., Koma, Y.I., and Kitamura, Y. (2003) IGSF4: a new intercellular adhesion molecule that is called by three names, TSLC1, SgIGSF and SynCAM, by virtue of its diverse function. Histol Histopathol 18, 1321–1329.

    PubMed  CAS  Google Scholar 

  150. Li, J., Zhang, Z., Bidder, M., Funk, M.C., Nguyen, L., Goodfellow, P.J., and Rader, J.S. (2005) IGSF4 promoter methylation and expression silencing in human cervical cancer. Gynecol Oncol 96, 150–158.

    PubMed  CAS  Google Scholar 

  151. Taniguchi, T., Kobayashi, T., Kondo, J., Takahashi, K., Nakamura, H., Suzuki, J., Nagai, K., Yamada, T., Nakamura, S., and Yamamura, H. (1991) Molecular cloning of a porcine gene syk that encodes a 72-kDa protein-tyrosine kinase showing high susceptibility to proteolysis. J Biol Chem 266, 15790–15796.

    PubMed  CAS  Google Scholar 

  152. Coopman, P.J., Do, M.T., Barth, M., Bowden, E.T., Hayes, A.J., Basyuk, E., Blancato, J.K., Vezza, P.R., McLeskey, S.W., Mangeat, P.H., et al. (2000) The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells. Nature 406, 742–747.

    PubMed  CAS  Google Scholar 

  153. Ulanova, M., Puttagunta, L., Marcet-Palacios, M., Duszyk, M., Steinhoff, U., Duta, F., Kim, M.K., Indik, Z.K., Schreiber, A.D., and Befus, A.D. (2005) Syk tyrosine kinase participates in beta1-integrin signaling and inflammatory responses in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 288, L497–507.

    PubMed  CAS  Google Scholar 

  154. Yamada, T., Fujieda, S., Yanagi, S., Yamamura, H., Inatome, R., Sunaga, H., and Saito, H. (2001) Protein-tyrosine kinase Syk expressed in human nasal fibroblasts and its effect on RANTES production. J Immunol 166, 538–543.

    PubMed  CAS  Google Scholar 

  155. Inatome, R., Yanagi, S., Takano, T., and Yamamura, H. (2001) A critical role for Syk in endothelial cell proliferation and migration. Biochem Biophys Res Commun 286, 195–199.

    PubMed  CAS  Google Scholar 

  156. Yuan, Y., Wang, J., Li, J., Wang, L., Li, M., Yang, Z., Zhang, C., and Dai, J.L. (2006) Frequent epigenetic inactivation of spleen tyrosine kinase gene in human hepatocellular carcinoma. Clin Cancer Res 12, 6687–6695.

    PubMed  CAS  Google Scholar 

  157. Turner, M., Schweighoffer, E., Colucci, F., Di Santo, J.P., and Tybulewicz, V.L. (2000) Tyrosine kinase SYK: essential functions for immunoreceptor signalling. Immunol Today 21, 148–154.

    PubMed  CAS  Google Scholar 

  158. Brumbaugh, K.M., Binstadt, B.A., Billadeau, D.D., Schoon, R.A., Dick, C.J., Ten, R.M., and Leibson, P.J. (1997) Functional role for Syk tyrosine kinase in natural killer cell-mediated natural cytotoxicity. J Exp Med 186, 1965–1974.

    PubMed  CAS  Google Scholar 

  159. Yuan, Y., Mendez, R., Sahin, A., and Dai, J.L. (2001) Hypermethylation leads to silencing of the SYK gene in human breast cancer. Cancer Res 61, 5558–5561.

    PubMed  CAS  Google Scholar 

  160. Toyama, T., Iwase, H., Yamashita, H., Hara, Y., Omoto, Y., Sugiura, H., Zhang, Z., and Fujii, Y. (2003) Reduced expression of the Syk gene is correlated with poor prognosis in human breast cancer. Cancer Lett 189, 97–102.

    PubMed  CAS  Google Scholar 

  161. Zhao, S., Sun, G., Tony, P.W., Ma, D., and Zhao, C. (2011) Expression and methylation status of the Syk gene in cervical carcinoma. Arch Gynecol Obstet. 283, 1113–1119.

    PubMed  CAS  Google Scholar 

  162. Douc-Rasy, S., Barrois, M., Fogel, S., Ahomadegbe, J.C., Stehelin, D., Coll, J., and Riou, G. (1996) High incidence of loss of heterozygosity and abnormal imprinting of H19 and IGF2 genes in invasive cervical carcinomas. Uncoupling of H19 and IGF2 expression and biallelic hypomethylation of H19. Oncogene 12, 423–430.

    PubMed  CAS  Google Scholar 

  163. Gama-Sosa, M.A., Slagel, V.A., Trewyn, R.W., Oxenhandler, R., Kuo, K.C., Gehrke, C.W., and Ehrlich, M. (1983) The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 11, 6883–6894.

    PubMed  CAS  Google Scholar 

  164. Kim, Y.I., Giuliano, A., Hatch, K.D., Schneider, A., Nour, M.A., Dallal, G.E., Selhub, J., and Mason, J.B. (1994) Global DNA hypomethylation increases progressively in cervical dysplasia and carcinoma. Cancer 74, 893–899.

    PubMed  CAS  Google Scholar 

  165. de Capoa, A., Musolino, A., Della Rosa, S., Caiafa, P., Mariani, L., Del Nonno, F., Vocaturo, A., Donnorso, R.P., Niveleau, A., and Grappelli, C. (2003) DNA demethylation is directly related to tumour progression: evidence in normal, pre-malignant and malignant cells from uterine cervix samples. Oncol Rep 10, 545–549.

    PubMed  Google Scholar 

  166. Mathers, J.C. (2008) Session 2: Personalised nutrition. Epigenomics: a basis for understanding individual differences? Proc Nutr Soc 67, 390–394.

    PubMed  Google Scholar 

  167. Kristjuhan, A., Walker, J., Suka, N., Grunstein, M., Roberts, D., Cairns, B.R., and Svejstrup, J.Q. (2002) Transcriptional inhibition of genes with severe histone h3 hypoacetylation in the coding region. Mol Cell 10, 925–933.

    PubMed  CAS  Google Scholar 

  168. Du, T.T. and Huang, Q.H. (2007) [The roles of histone lysine methylation in epigenetic regulation]. Yi Chuan 29, 387–392.

    PubMed  CAS  Google Scholar 

  169. Fraga, M.F., Ballestar, E., Villar-Garea, A., Boix-Chornet, M., Espada, J., Schotta, G., Bonaldi, T., Haydon, C., Ropero, S., Petrie, K., et al. (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37, 391–400.

    PubMed  CAS  Google Scholar 

  170. Anton, M., Horky, M., Kuchtickova, S., Vojtesek, B., and Blaha, O. (2004) Immunohistochemical detection of acetylation and phosphorylation of histone H3 in cervical smears. Ceska Gynekol 69, 3–6.

    PubMed  CAS  Google Scholar 

  171. Pisani, P., Bray, F., and Parkin, D.M. (2002) Estimates of the world-wide prevalence of cancer for 25 sites in the adult population. Int J Cancer 97, 72–81.

    PubMed  CAS  Google Scholar 

  172. Wang, S.S., Sherman, M.E., Hildesheim, A., Lacey, J.V., Jr., and Devesa, S. (2004) Cervical adenocarcinoma and squamous cell carcinoma incidence trends among white women and black women in the United States for 1976-2000. Cancer 100, 1035–1044.

    PubMed  Google Scholar 

  173. Kulasingam, S.L., Hughes, J.P., Kiviat, N.B., Mao, C., Weiss, N.S., Kuypers, J.M., and Koutsky, L.A. (2002) Evaluation of human papillomavirus testing in primary screening for cervical abnormalities: comparison of sensitivity, specificity, and frequency of referral. JAMA 288, 1749–1757.

    PubMed  Google Scholar 

  174. Bulkmans, N.W., Berkhof, J., Bulk, S., Bleeker, M.C., van Kemenade, F.J., Rozendaal, L., Snijders, P.J., and Meijer, C.J. (2007) High-risk HPV type-specific clearance rates in cervical screening. Br J Cancer 96, 1419–1424.

    PubMed  CAS  Google Scholar 

  175. Nieh, S., Chen, S.F., Chu, T.Y., Lai, H.C., Lin, Y.S., Fu, E., and Gau, C.H. (2005) Is p16(INK4A) expression more useful than human papillomavirus test to determine the outcome of atypical squamous cells of undetermined significance-categorized Pap smear? A comparative analysis using abnormal cervical smears with follow-up biopsies. Gynecol Oncol 97, 35–40.

    PubMed  CAS  Google Scholar 

  176. Kalof, A.N., Evans, M.F., Simmons-Arnold, L., Beatty, B.G., and Cooper, K. (2005) p16INK4A immunoexpression and HPV in situ hybridization signal patterns: potential markers of high-grade cervical intraepithelial neoplasia. Am J Surg Pathol 29, 674-679.

    PubMed  Google Scholar 

  177. Laird, P.W. (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3, 253-266.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuping Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lu, Q., Ma, D., Zhao, S. (2012). DNA Methylation Changes in Cervical Cancers. In: Dumitrescu, R., Verma, M. (eds) Cancer Epigenetics. Methods in Molecular Biology, vol 863. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-612-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-612-8_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-611-1

  • Online ISBN: 978-1-61779-612-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics