Skip to main content

Epigenetics of Solid Cancer Stem Cells

  • Protocol
  • First Online:
Cancer Epigenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 863))

Abstract

Epigenetics is an emerging science that can help to explain carcinogenesis. The possibility that carcinogenesis may originate in a stem cell process was proposed recently. Stem cells are generated and contribute to tumor formation during the process of tumor development. This chapter focuses on the role of epigenetics and genetics in stem cell formation, different theories about the origin of cancer stem cells (CSCs), and epigenetic mechanisms that occur in solid CSCs. Potential applications of knowledge gained through this field and future prospects for cancer treatment also are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ChIP:

Chromatin immunoprecipitation

CSCs:

Cancer stem cells

DREAM:

Digital restriction enzyme analysis of methylation

HATs:

Histone acetyltransferases

HDACs:

Histone deacetylases

HDMs:

Histone demethylases

HMTs:

Histone methyltransferases

iPSC:

Induced pluripotent stem cell

LOI:

Loss of imprinting

PcG:

Polycomb group genes

References

  1. Waddington, C.H. (1942) The epigenotype. Endeavour 1, 18–20.

    Google Scholar 

  2. Bonasio, R., Tu, S., and Reinberg, D. (2010) Molecular signals of epigenetic states. Science 330, 612–616.

    Article  PubMed  CAS  Google Scholar 

  3. Bird, A. (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16, 6–21.

    Article  PubMed  CAS  Google Scholar 

  4. Takai, D., and Jones, P. A. (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA 99, 3740–3745.

    Article  PubMed  CAS  Google Scholar 

  5. Suzuki, M. M., and Bird, A. (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9, 465–476.

    Article  PubMed  CAS  Google Scholar 

  6. Weber, M., Hellmann, I., Stadler, M. B., Ramos, L., Paabo, S., Rebhan, M., and Schubeler, D. (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39, 457–466.

    Article  PubMed  CAS  Google Scholar 

  7. Futscher, B. W., Oshiro, M. M., Wozniak, R. J., Holtan, N., Hanigan, C. L., Duan, H., and Domann, F. E. (2002) Role for DNA methylation in the control of cell type specific maspin expression. Nat Genet 31, 175–179.

    Article  PubMed  CAS  Google Scholar 

  8. Bodey, B. (2002) Cancer-testis antigens: promising targets for antigen directed antineoplastic immunotherapy. Expert Opin Biol Ther 2, 577–584.

    Article  PubMed  CAS  Google Scholar 

  9. Hattori, N., Nishino, K., Ko, Y. G., Hattori, N., Ohgane, J., Tanaka, S., and Shiota, K. (2004) Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J Biol Chem 279, 17063–17069.

    Article  PubMed  CAS  Google Scholar 

  10. Kim, G. D., Ni, J., Kelesoglu, N., Roberts, R. J., and Pradhan, S. (2002) Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases. EMBO J 21, 4183–4195.

    Article  PubMed  CAS  Google Scholar 

  11. Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., Wei, G., Chepelev, I., and Zhao, K. (2007) High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837.

    Article  PubMed  CAS  Google Scholar 

  12. Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Peng, W., Zhang, M. Q., and Zhao, K. (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40, 897–903.

    Article  PubMed  CAS  Google Scholar 

  13. Kouzarides, T. (2007) Chromatin modifications and their function. Cell 128, 693–705.

    Article  PubMed  CAS  Google Scholar 

  14. Jenuwein, T. (2006) The epigenetic magic of histone lysine methylation. FEBS J 273, 3121–3135.

    Article  PubMed  CAS  Google Scholar 

  15. Hebbes, T. R., Thorne, A. W., and Crane-Robinson, C. (1988) A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J 7, 1395–1402.

    PubMed  CAS  Google Scholar 

  16. Cedar, H., and Bergman, Y. (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10, 295–304.

    Article  PubMed  CAS  Google Scholar 

  17. Bai, L., and Morozov, A. V. (2010) Gene regulation by nucleosome positioning. Trends Genet 26, 476–483.

    Article  PubMed  CAS  Google Scholar 

  18. Schones, D. E., Cui, K., Cuddapah, S., Roh, T. Y., Barski, A., Wang, Z., Wei, G., and Zhao, K. (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132, 887–898.

    Article  PubMed  CAS  Google Scholar 

  19. Jin, C., and Felsenfeld, G. (2007) Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev 21, 1519–1529.

    Article  PubMed  CAS  Google Scholar 

  20. Lewis, B. P., Burge, C. B., and Bartel, D. P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20.

    Article  PubMed  CAS  Google Scholar 

  21. He, L., and Hannon, G. J. (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5, 522–531.

    Article  PubMed  CAS  Google Scholar 

  22. Halfmann, R., and Lindquist, S. (2010) Epigenetics in the extreme: prions and the inheritance of environmentally acquired traits. Science 330, 629–632.

    Article  PubMed  CAS  Google Scholar 

  23. Mosher, R. A., Lewsey, M. G., and Shivaprasad, P. V. (2010) RNA silencing in plants: Flash report! Silence 1, 13.

    Google Scholar 

  24. Feinberg, A. P., and Vogelstein, B. (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301, 89–92.

    Article  PubMed  CAS  Google Scholar 

  25. Jones, P. A., and Baylin, S. B. (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3, 415–428.

    Article  PubMed  CAS  Google Scholar 

  26. Howard, G., Eiges, R., Gaudet, F., Jaenisch, R., and Eden, A. (2008) Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene 27, 404–408.

    Article  PubMed  CAS  Google Scholar 

  27. Greger, V., Passarge, E., Hopping, W., Messmer, E., and Horsthemke, B. (1989) Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet 83, 155–158.

    Article  PubMed  CAS  Google Scholar 

  28. Widschwendter, M., Fiegl, H., Egle, D., Mueller-Holzner, E., Spizzo, G., Marth, C., Weisenberger, D. J., Campan, M., Young, J., Jacobs, I., and Laird, P. W. (2007) Epigenetic stem cell signature in cancer. Nat Genet 39, 157–158.

    Article  PubMed  CAS  Google Scholar 

  29. Long, C., Yin, B., Lu, Q., Zhou, X., Hu, J., Yang, Y., Yu, F., and Yuan, Y. (2007) Promoter hypermethylation of the RUNX3 gene in esophageal squamous cell carcinoma. Cancer Invest 25, 685–690.

    Article  PubMed  CAS  Google Scholar 

  30. Akiyama, Y., Watkins, N., Suzuki, H., Jair, K. W., van Engeland, M., Esteller, M., Sakai, H., Ren, C. Y., Yuasa, Y., Herman, J. G., and Baylin, S. B. (2003) GATA-4 and GATA-5 transcription factor genes and potential downstream antitumor target genes are epigenetically silenced in colorectal and gastric cancer. Mol Cell Biol 23, 8429–8439.

    Article  PubMed  CAS  Google Scholar 

  31. Wu, H., Chen, Y., Liang, J., Shi, B., Wu, G., Zhang, Y., Wang, D., Li, R., Yi, X., Zhang, H., Sun, L., and Shang, Y. (2005) Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis. Nature 438, 981–987.

    Article  PubMed  CAS  Google Scholar 

  32. Brueckner, B., Stresemann, C., Kuner, R., Mund, C., Musch, T., Meister, M., Sultmann, H., and Lyko, F. (2007) The human let-7a-3 locus contains an epigenetically regulated microRNA gene with oncogenic function. Cancer Res 67, 1419–1423.

    Article  PubMed  CAS  Google Scholar 

  33. Cui, H., Cruz-Correa, M., Giardiello, F. M., Hutcheon, D. F., Kafonek, D. R., Brandenburg, S., Wu, Y., He, X., Powe, N. R., and Feinberg, A. P. (2003) Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299, 1753–1755.

    Article  PubMed  CAS  Google Scholar 

  34. Kaneda, A., and Feinberg, A. P. (2005) Loss of imprinting of IGF2: a common epigenetic modifier of intestinal tumor risk. Cancer Res 65, 11236–11240.

    Article  PubMed  CAS  Google Scholar 

  35. Fraga, M. F., Ballestar, E., Villar-Garea, A., Boix-Chornet, M., Espada, J., Schotta, G., Bonaldi, T., Haydon, C., Ropero, S., Petrie, K., Iyer, N. G., Perez-Rosado, A., Calvo, E., Lopez, J. A., Cano, A., Calasanz, M. J., Colomer, D., Piris, M. A., Ahn, N., Imhof, A., Caldas, C., Jenuwein, T., and Esteller, M. (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37, 391–400.

    Article  PubMed  CAS  Google Scholar 

  36. Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J. R., Cole, P. A., Casero, R. A., and Shi, Y. (2004) Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953.

    Article  PubMed  CAS  Google Scholar 

  37. Ventura, A., and Jacks, T. (2009) MicroRNAs and cancer: short RNAs go a long way. Cell 136, 586–591.

    Article  PubMed  CAS  Google Scholar 

  38. Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B. L., Mak, R. H., Ferrando, A. A., Downing, J. R., Jacks, T., Horvitz, H. R., and Golub, T. R. (2005) MicroRNA expression profiles classify human cancers. Nature 435, 834–838.

    Article  PubMed  CAS  Google Scholar 

  39. Clarke, M. F., Dick, J. E., Dirks, P. B., Eaves, C. J., Jamieson, C. H., Jones, D. L., Visvader, J., Weissman, I. L., and Wahl, G. M. (2006) Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66, 9339–9344.

    Article  PubMed  CAS  Google Scholar 

  40. Furth, J., and Kahn, M.C. (1937) Transmission of leukemia of mice with a single cell. Am J Cancer 31, 276–282.

    Google Scholar 

  41. Kelly, P. N., Dakic, A., Adams, J. M., Nutt, S. L., and Strasser, A. (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317, 337.

    Article  PubMed  CAS  Google Scholar 

  42. Quintana, E., Shackleton, M., Sabel, M. S., Fullen, D. R., Johnson, T. M., and Morrison, S. J. (2008) Efficient tumour formation by single human melanoma cells. Nature 456, 593–598.

    Article  PubMed  CAS  Google Scholar 

  43. Gupta, P. B., Chaffer, C. L., and Weinberg, R. A. (2009) Cancer stem cells: mirage or reality? Nat Med 15, 1010–1012.

    Article  PubMed  CAS  Google Scholar 

  44. Park, C.Y., Tseng, D., and Weissman I. L. (2009) Cancer stem cell-directed therapies: recent data from the laboratory and clinic. Mol Ther 17, 219–230.

    Article  PubMed  CAS  Google Scholar 

  45. Marotta, L. L., and Polyak, K. (2009) Cancer stem cells: a model in the making. Curr Opin Genet Dev 19, 44–50.

    Article  PubMed  Google Scholar 

  46. Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., Henkelman, R. M., Cusimano, M. D., and Dirks, P. B. (2004) Identification of human brain tumour initiating cells. Nature 432, 396–401.

    Article  PubMed  CAS  Google Scholar 

  47. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., and Clarke, M. F. (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100, 3983–3988.

    Article  PubMed  CAS  Google Scholar 

  48. Dalerba, P., Dylla, S. J., Park, I. K., Liu, R., Wang, X., Cho, R. W., Hoey, T., Gurney, A., Huang, E. H., Simeone, D. M., Shelton, A. A., Parmiani, G., Castelli, C., and Clarke, M. F. (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 104, 10158–10163.

    Article  PubMed  CAS  Google Scholar 

  49. Prince, M. E., Sivanandan, R., Kaczorowski, A., Wolf, G. T., Kaplan, M. J., Dalerba, P., Weissman, I. L., Clarke, M. F., and Ailles, L. E. (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104, 973–978.

    Article  PubMed  CAS  Google Scholar 

  50. Yang, Z. F., Ho, D. W., Ng, M. N., Lau, C. K., Yu, W. C., Ngai, P., Chu, P. W., Lam, C. T., Poon, R. T., and Fan, S. T. (2008) Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13, 153–166.

    Article  PubMed  CAS  Google Scholar 

  51. Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., Guba, M., Bruns, C. J., and Heeschen, C. (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1, 313–323.

    Article  PubMed  CAS  Google Scholar 

  52. Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J., and Maitland, N. J. (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65, 10946–10951.

    Article  PubMed  CAS  Google Scholar 

  53. Bussolati, B., Bruno, S., Grange, C., Ferrando, U., and Camussi, G. (2008) Identification of a tumor-initiating stem cell population in human renal carcinomas. FASEB J 22, 3696–3705.

    Article  PubMed  CAS  Google Scholar 

  54. Schatton, T., Murphy, G. F., Frank, N. Y., Yamaura, K., Waaga-Gasser, A. M., Gasser, M., Zhan, Q., Jordan, S., Duncan, L. M., Weishaupt, C., Fuhlbrigge, R. C., Kupper, T. S., Sayegh, M. H., and Frank, M. H. (2008) Identification of cells initiating human melanomas. Nature 451, 345–349.

    Article  PubMed  CAS  Google Scholar 

  55. Sell, S., and Pierce, G.B. (1994) Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest 70, 6–22.

    PubMed  CAS  Google Scholar 

  56. Gil-Perotin, S., Marin-Husstege, M., Li, J., Soriano-Navarro, M., Zindy, F., Roussel, M.F., Garcia-Verdugo J,M., and Casaccia-Bonnefil, P. (2006) Loss of p53 induces changes in the behavior of subventricular zone cells: implication for the genesis of glial tumors. J Neurosci 26,1107–1116.

    Google Scholar 

  57. Fialkow, P. J. (1990) Stem cell origin of human myeloid blood cell neoplasms. Verh Dtsch Ges Pathol 74, 43–47.

    PubMed  CAS  Google Scholar 

  58. Cozzio, A., Passegue, E., Ayton, P. M., Karsunky, H., Cleary, M. L., and Weissman, I. L. (2003) Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 17, 3029–3035.

    Article  PubMed  CAS  Google Scholar 

  59. Goelz, S. E., Vogelstein, B., Hamilton, S. R., and Feinberg, A. P. (1985) Hypomethylation of DNA from benign and malignant human colon neoplasms. Science 228, 187–190.

    Article  PubMed  CAS  Google Scholar 

  60. Feinberg, A. P., Ohlsson, R., and Henikoff, S. (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7, 21–33.

    Article  PubMed  CAS  Google Scholar 

  61. Ohm, J. E., McGarvey, K. M., Yu, X., Cheng, L., Schuebel, K. E., Cope, L., Mohammad, H. P., Chen, W., Daniel, V. C., Yu, W., Berman, D. M., Jenuwein, T., Pruitt, K., Sharkis, S. J., Watkins, D. N., Herman, J. G., and Baylin, S. B. (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39, 237–242.

    Article  PubMed  CAS  Google Scholar 

  62. Bibikova, M., Chudin, E., Wu, B., Zhou, L., Garcia, E. W., Liu, Y., Shin, S., Plaia, T. W., Auerbach, J. M., Arking, D. E., Gonzalez, R., Crook, J., Davidson, B., Schulz, T. C., Robins, A., Khanna, A., Sartipy, P., Hyllner, J., Vanguri, P., Savant-Bhonsale, S., Smith, A. K., Chakravarti, A., Maitra, A., Rao, M., Barker, D. L., Loring, J. F., and Fan, J. B. (2006) Human embryonic stem cells have a unique epigenetic signature. Genome Res 16, 1075–1083.

    Article  PubMed  CAS  Google Scholar 

  63. Yuspa, S. H. (1983) Molecular and cellular basis for tumor promotion in mouse skin. Princess Takamatsu Symp 14, 315–326.

    PubMed  CAS  Google Scholar 

  64. Holst, C. R., Nuovo, G. J., Esteller, M., Chew, K., Baylin, S. B., Herman, J. G., and Tlsty, T. D. (2003) Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia. Cancer Res 63, 1596–1601.

    PubMed  CAS  Google Scholar 

  65. Hochedlinger, K., Blelloch, R., Brennan, C., Yamada, Y., Kim, M., Chin, L., and Jaenisch, R. (2004) Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev 18, 1875–1885.

    Article  PubMed  CAS  Google Scholar 

  66. Sakatani, T., Kaneda, A., Iacobuzio-Donahue, C. A., Carter, M. G., de Boom Witzel, S., Okano, H., Ko, M. S., Ohlsson, R., Longo, D. L., and Feinberg, A. P. (2005) Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice. Science 307, 1976–1978.

    Article  PubMed  CAS  Google Scholar 

  67. Werbowetski-Ogilvie, T. E., Bosse, M., Stewart, M., Schnerch, A., Ramos-Mejia, V., Rouleau, A., Wynder, T., Smith, M. J., Dingwall, S., Carter, T., Williams, C., Harris, C., Dolling, J., Wynder, C., Boreham, D., and Bhatia, M. (2009) Characterization of human embryonic stem cells with features of neoplastic progression. Nat Biotechnol 27, 91–97.

    Article  PubMed  CAS  Google Scholar 

  68. Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., Jaenisch, R., Wagschal, A., Feil, R., Schreiber, S. L., and Lander, E. S. (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326.

    Article  PubMed  CAS  Google Scholar 

  69. Valk-Lingbeek, M. E., Bruggeman, S. W., and van Lohuizen, M. (2004) Stem cells and cancer; the polycomb connection. Cell 118, 409–418.

    Article  PubMed  CAS  Google Scholar 

  70. Muyrers-Chen, I., Hernandez-Munoz, I., Lund, A. H., Valk-Lingbeek, M. E., van der Stoop, P., Boutsma, E., Tolhuis, B., Bruggeman, S. W., Taghavi, P., Verhoeven, E., Hulsman, D., Noback, S., Tanger, E., Theunissen, H., and van Lohuizen, M. (2004) Emerging roles of Polycomb silencing in X-inactivation and stem cell maintenance. Cold Spring Harb Symp Quant Biol 69, 319–326.

    Article  PubMed  CAS  Google Scholar 

  71. Agrelo, R., and Wutz, A. (2009) Cancer progenitors and epigenetic contexts: an Xisting connection. Epigenetics 4, 568–570.

    Article  PubMed  CAS  Google Scholar 

  72. Bapat, S. A. (2007) Evolution of cancer stem cells. Semin Cancer Biol 17, 204–213.

    Article  PubMed  CAS  Google Scholar 

  73. Mathews, L. A., Crea, F., and Farrar, W. L. (2009) Epigenetic gene regulation in stem cells and correlation to cancer. Differentiation 78, 1–17.

    Article  PubMed  CAS  Google Scholar 

  74. Flusberg, B. A., Webster, D. R., Lee, J. H., Travers, K. J., Olivares, E. C., Clark, T. A., Korlach, J., and Turner, S. W. (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7, 461–465.

    Article  PubMed  CAS  Google Scholar 

  75. Kumar, D., and Verma M. (2009) Methods in cancer epigenetics and epidemiology. Methods Mol Biol 471, 273–288.

    Article  PubMed  CAS  Google Scholar 

  76. Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka,T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N., and Yamanaka, S. (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26, 101–106.

    Article  PubMed  CAS  Google Scholar 

  77. Hong, H., Takahashi, K., Ichisaka, T., Aoi, T., Kanagawa, O., Nakagawa, M., Okita, K., and Yamanaka, S. (2009) Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460, 1132–1135.

    Article  PubMed  CAS  Google Scholar 

  78. Doi, A., Park, I. H., Wen, B., Murakami, P., Aryee, M. J., Irizarry, R., Herb, B., Ladd-Acosta, C., Rho, J., Loewer, S., Miller, J., Schlaeger, T., Daley, G. Q., and Feinberg, A. P. (2009) Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 41, 1350–1353.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Mishra, A., Verma, M. (2012). Epigenetics of Solid Cancer Stem Cells. In: Dumitrescu, R., Verma, M. (eds) Cancer Epigenetics. Methods in Molecular Biology, vol 863. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-612-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-612-8_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-611-1

  • Online ISBN: 978-1-61779-612-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics