Advertisement

Challenges in the DNA Barcoding of Plant Material

  • Robyn S. CowanEmail author
  • Michael F. Fay
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 862)

Abstract

DNA barcoding, using a short gene sequence from a standardized region of the genome, is a species identification tool which would not only aid species discovery but would also have applications ranging from large-scale biodiversity surveys through to identification of a single fragment of material in forensic contexts. To fulfill this vision a universal, relatively cheap, scalable system needs to be in place. The mitochondrial locus being used for many animal groups and algae is not suitable for use in land plants, and an appropriate alternative is needed.

Progress has been made in the selection of two alternative regions for plant DNA barcoding. There are however many challenges in finding a solution that fulfills all the requirements of a successful, universally applicable barcode, and in the short term a pragmatic solution that achieves as much as possible and has payoffs in most areas has been chosen. Research continues in areas ranging from the technicalities of sequencing the regions to data analysis and the potential improvements that may result from the developing technology and data analysis systems.

The ultimate success of DNA barcoding as a plant identification tool for all occasions depends on the building of a reference database and it fulfilling the requirements of potential users such that they are able to achieve valid results through its use, that would be more time consuming and costly, and less reliable using other techniques.

Key words

DNA barcoding Land plants Plastid CBOL Data analysis rbcL matK 

References

  1. 1.
    Hebert PDN et al (2003) Biological identifications through DNA barcodes. Philos Trans Royal Soc B 270:313–321.Google Scholar
  2. 2.
    Hebert PDN, Ratnasingham S and De Waard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Philos Trans Royal Soc B 270:S96–S99.Google Scholar
  3. 3.
    Hebert PDN et al (2004) Identification of birds through DNA barcodes. PLoS Biol 2:e312. doi: 10.1371/journal.pbio.0020312. PubMedCrossRefGoogle Scholar
  4. 4.
    Ward RD, et al (2005) A start to DNA barcoding Australia’s fish species. Philos Trans Royal Soc, Ser B 360:1847–1857.CrossRefGoogle Scholar
  5. 5.
    Cywinska A, Hunter FF, Hebert PDN (2006) Identifying Canadian mosquito species through DNA barcodes. Med Vet Entomol 20: 413–424PubMedCrossRefGoogle Scholar
  6. 6.
    Bakker FT, et al (2000. Mitochondrial and chloroplast DNA-based phylogeny of Pelargonium (Geraniaceae). Amer J Bot 87:727–734.CrossRefGoogle Scholar
  7. 7.
    Cho Y, et al (2004) Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proc Natl Acad Sci U.S.A. 101:17741–17746.PubMedCrossRefGoogle Scholar
  8. 8.
    Parkinson P L, et al (2005) Multiple major increases and decreases in mitochondrial substitution rates in the plant family Geraniaceae. BMC Evol Biol 5:73.PubMedCrossRefGoogle Scholar
  9. 9.
    Palmer J D, et al (2000) Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc Natl Acad Sci U.S.A. 97:6960–6966.PubMedCrossRefGoogle Scholar
  10. 10.
    Mower J P, et al (2004) Plant genetics: gene transfer from parasitic to host plants. Nature 432:165–166.Google Scholar
  11. 11.
    Chase MW, et al (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Ann Mo Bot Gard 80: 528–548+550–580.Google Scholar
  12. 12.
    Fay MF, Krauss SL (2003) Orchid conservation genetics. in the molecular age. In: Dixon KW, et al (eds.), Orchid conservation. Natural History Publications, Kota Kinabalu, Sabah.Google Scholar
  13. 13.
    Richardson JE, et al (2003) Species delimitation and the origin of populations in island representatives of Phylica (Rhamnaceae). Evolution 57:816–827.Google Scholar
  14. 14.
    Clarkson JJ, et al (2004) Phylogenetic relationships in Nicotiana based on multiple plastid loci. Molec Phylog Evol 33:75–90.CrossRefGoogle Scholar
  15. 15.
    Bradford JC, Barnes RW (2001) Phylogenetics and classification of Cunoniaceae (Oxalidales) using chloroplast DNA sequences and morphology. Syst Bot 26:354–385.Google Scholar
  16. 16.
    Widmer A, et al (2000) Molecular analysis of orchid pollinaria and pollinaria-remains found on insects. Mol Ecol 9:1911–1914.PubMedCrossRefGoogle Scholar
  17. 17.
    Chase MW, et al (2007) A proposal for a standardised protocol to barcode all land plants. Taxon 56:295–299.Google Scholar
  18. 18.
    Kress JW, et al (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci 102:8369–8374.PubMedCrossRefGoogle Scholar
  19. 19.
    Ford CS, et al (2009) Selection of candidate coding DNA barcoding regions for use on land plants. Bot J Linn 159:1–11.CrossRefGoogle Scholar
  20. 20.
    Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE 2: e508. doi: 10.1371/journal.pone.0000508. PubMedCrossRefGoogle Scholar
  21. 21.
    Kim KJ, Lee H-L (2004) Complete chloroplast genome sequences from Korean Ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Research 11:247–261.PubMedCrossRefGoogle Scholar
  22. 22.
    Taberlet P, et al (2007) Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding Nucl Acids Res 35:e14 doi: 10.1093/nar/gkl938.
  23. 23.
    Liepelt S, et al (2006) Authenticated DNA from ancient wood remains. Ann Bot 98:1107–1111PubMedCrossRefGoogle Scholar
  24. 24.
    Rowntree JK et al (2010) Which moss is which? Identification of the threatened moss Ortho­don­tium gracile using molecular and morphological techniques. Conser Genet 11:1033–1042.CrossRefGoogle Scholar
  25. 25.
    Shaw J, et al (2005) The tortoise and the hare II: Comparison of the relative utility of 21 non-coding chloroplast DNA sequences for phylogenetic analysis. Amer J Bot 92:142–166.CrossRefGoogle Scholar
  26. 26.
    CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci U.S.A. 106:12794–12797.CrossRefGoogle Scholar
  27. 27.
    Janzen DH (2005) in Plant conservation: A natural history approach. Krupnick G, Kress WJ (eds) University of Chicago Press, Chicago.Google Scholar
  28. 28.
    Devey DS, Chase MW, Clarkson JJ (2009) A stuttering start to plant DNA barcoding: microsatellites present a previously overlooked problem in non-coding plastid regions. Taxon 58:7–15.Google Scholar
  29. 29.
    Fazekas AJ, et al (2009) Are plant species inherently harder to discriminate than animal species using DNA barcoding markers?. Mol Ecol Resour 9:130–139.CrossRefGoogle Scholar
  30. 30.
    Kress WJ, et al (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proc Natl Acad Sci U.S.A. 106:18621–18626.PubMedCrossRefGoogle Scholar
  31. 31.
    Richardson JE, et al (2001) Rapid and recent origin of species richness in the Cape Flora of South Africa. Nature 412:181–183.PubMedCrossRefGoogle Scholar
  32. 32.
    Richardson JE, et al (2001) Phylogenetic analysis of Phylica L. with an emphasis on island species: evidence from plastid trnL-F DNA and nuclear internal transcribed spacer (ribosomal DNA) sequences. Taxon 50:405–427.CrossRefGoogle Scholar
  33. 33.
    Tsitrone A, Kirkpatrick M, Levin DA (2003) A model for chloroplast capture. Evolution 57:1776–1782.PubMedGoogle Scholar
  34. 34.
    Fay MF, et al (2007) How does hybridization influence the decision making process in conservation? The genus Orchis (Orchidaceae) as a case history. Lankesteriana 7:135–137.Google Scholar
  35. 35.
    Soltis DE, Kuzoff RK (1995) Discordance between nuclear and chloroplast phylogenies in the Heuchera group (Saxifragaceae). Evolution 49:727–742.CrossRefGoogle Scholar
  36. 36.
    Hoban SM et al (2009) Geographically extensive hybridization between the forest trees American butternut and Japanese walnut. Biol Letters 5:324–327.CrossRefGoogle Scholar
  37. 37.
    Hansen LB, Siegismund HR and Jørgensen RB (2003) Progressive introgression between Brassica napus (oilseed rape) and B. rapa. Heredity 91:276–283.PubMedCrossRefGoogle Scholar
  38. 38.
    Haider N, Allainguillaume J and Wilkinson MJ (2009) Spontaneous capture of oilseed rape (Brassica napus) chloroplasts by wild B. rapa: implications for the use of chloroplast transformation for biocontainment. Curr Genet 55:139–150.PubMedCrossRefGoogle Scholar
  39. 39.
    Meyers LA, Levin DA (2006). On the abundance of polyploids in flowering plants. Evolution 60:1198–1206.PubMedGoogle Scholar
  40. 40.
    Soltis DE, et al (2007) Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon 56:13–30.Google Scholar
  41. 41.
    Chester M, et al (2007) Parentage of endemic Sorbus L. (Rosaceae) species in the British Isles: evidence from plastid DNA. Bot J Linn Soc 154:291–304.CrossRefGoogle Scholar
  42. 42.
    Chase MW, et al (2005) Land plants and DNA barcodes: short-term and long-term goals. Philos Trans Royal B 360:1889–1895.CrossRefGoogle Scholar
  43. 43.
    Cameron, K. University of Wisconsin, pers. comm.Google Scholar
  44. 44.
    Benson DA, et al (2010) GenBank. Nucleic Acids Res 38:D46–D51.PubMedCrossRefGoogle Scholar
  45. 45.
    Ratnasingham S, Hebert PDN (2007) BOLD :The Barcode of Life Data System (www.barcodinglife.org). Mol Ecol Notes 7: 355–364.PubMedCrossRefGoogle Scholar
  46. 46.
    Little DP, Stevenson DW (2007) A comparison of algorithms for the identification of specimens using DNA barcodes: examples from gymnosperms. Cladistics 23:1–21.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Jodrell LaboratoryRoyal Botanic GardensRichmondUK

Personalised recommendations