Authentication of Medicinal Plants by SNP-Based Multiplex PCR

  • Ok Ran Lee
  • Min-Kyeoung Kim
  • Deok-Chun YangEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 862)


Highly variable intergenic spacer and intron regions from nuclear and cytoplasmic DNA have been used for species identification. Noncoding internal transcribed spacers (ITSs) located in 18S-5.8S-26S, and 5S ribosomal RNA genes (rDNAs) represent suitable region for medicinal plant authentication. Noncoding regions from two cytoplasmic DNA, chloroplast DNA (trnT-F intergenic spacer region), and mitochondrial DNA (fourth intron region of nad7 gene) are also successfully applied for the proper identification of medicinal plants. Single-nucleotide polymorphism (SNP) sites obtained from the amplification of intergenic spacer and intron regions are properly utilized for the verification of medicinal plants in species level using multiplex PCR. Multiplex PCR as a variant of PCR technique used to amplify more than two loci simultaneously.

Key words

Single-nucleotide polymorphism Internal transcribed spacers trnT-F region nad7 gene Multiplex PCR 



This work was supported by grants from the Kyung Hee University in 2011 (KHU-20110213) and the Next-Generation BioGreen 21 Program (SSAC, grant #: PJ008204), Rural Development Administration, Republic of Korea (to O.R.L).


  1. 1.
    Park, M.J., Kim, M.K., In, J.G., Yang, D.C. (2006) Molecular identification of Korean ginseng by amplification refractory mutation system-PCR. Food Research International 39, 568–574.CrossRefGoogle Scholar
  2. 2.
    Jigden, B., Wang, H., Narantuya, S. and Yang, D.C. (2010) Molecular identification of oriental plant Anemarrhena asphodeloides Bunge (‘Jimo’) by multiplex PCR. Mol Biol 37, 955–960.Google Scholar
  3. 3.
    Yip, T.T., Lau, C.N., But, P.P. and Kong, Y.C. (1985) Quantitative an analysis of Ginsenosides in fresh Panax Ginseng. The American Journal of Chinese Medicine 13, 77–88.PubMedCrossRefGoogle Scholar
  4. 4.
    Zhu, S., Fushimi, H., Cai, S., Komatsu, K. (2004) Species Identification from Ginseng Drugs by Multiplex Amplification Refractory Mutation System (MARMS). Planta Med 70, 189–192.PubMedCrossRefGoogle Scholar
  5. 5.
    Cui, X.M., Lo, C.K., Yip, K.L., Dong, T.T.X., Tsim, K.W.K. (2003) Authentication of Panax notoginseng by 5S-rRNA spacer domain and random amplified polymorphic DNA (RAPD) Analysis. Planta Med 69, 584–586.PubMedCrossRefGoogle Scholar
  6. 6.
    Shim, Y.H., Choi, J.H., Park, C.D., Lim, C.J., Cho, J.H., Kim, H.J. (2003) Molecular differentiation of panax species by RAPD analysis. Arch Pharm Res 26, 601–605.PubMedCrossRefGoogle Scholar
  7. 7.
    Shaw, P.C., But, P.P. (1995) Authentication of Panax species and their adulterants by random-primed polymerase chain reaction. Planta Med 61, 466–469.PubMedCrossRefGoogle Scholar
  8. 8.
    Cheung, K.S., Kwan, H.S., But, P.P., Shaw, P.C. (1994) Pharmacognostical identification of American and Oriental ginseng roots by genomic fingerprinting using arbitrarily primed polymerase chain reaction (AP-PCR). J Ethnopharmacol 42, 67–69.PubMedCrossRefGoogle Scholar
  9. 9.
    Choi, Y.E., Ahn, C.H., Kim, B.B., Yoon, E.S. (2008) Development of species specific AFLP-derived SCAR marker for authentication of Panax japonicus C. A. Meyer. Biol Pharm Bull 31, 135–138.CrossRefGoogle Scholar
  10. 10.
    Wang, J., Ha, W.Y., Ngan, F.N., But, P.P., Shaw, P.C. (2001) Application of sequence characterized amplified region (SCAR) analysis to authenticate Panax species and their adulterants. Planta Med 67, 781–783.PubMedCrossRefGoogle Scholar
  11. 11.
    Ngan, F., Shaw, P., But, P., Wang, J. (1999) Molecular authentication of panax species. Phytochemistry 50, 787–791.PubMedCrossRefGoogle Scholar
  12. 12.
    Sasaki, Y., Komatsu, K., Nagumo, S. (2008) Rapid detection of Panax ginseng by loop-mediated isothermal amplification and its application to authentication of ginseng. Biol Pharm Bull 31, 1806–1808.PubMedCrossRefGoogle Scholar
  13. 13.
    Ha, W.Y., Shaw, P.C., Liu, J., Yau, F.C., Wang, J. (2002) Authentication of Panax ginseng and Panax quinquefolius using amplified fragment length polymorphism (AFLP) and directed amplification of minisatellite region DNA (DAMD). J Agric Food Chem 27:50, 1871–1875.CrossRefGoogle Scholar
  14. 14.
    Zhu, S., Fushimi, H., Komatsu, K. (2008) Development of a DNA microarray for authentication of ginseng drugs based on 18S rRNA gene sequence. J Agric Food Chem 56, 3953–3959.PubMedCrossRefGoogle Scholar
  15. 15.
    Baldwin, B.G. (1992) Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Mol. Phylogen 1, 3–16.CrossRefGoogle Scholar
  16. 16.
    Olmstead, R.G. and Palmer, J.D. (1994) Chloroplast DNA systematics: a review of methods and data analysis. Amer. J. Bot 81, 1205–1224.CrossRefGoogle Scholar
  17. 17.
    Quandt, D., Stech, M. (2004) Molecular evolution of the trnTUGU trnFGAA region in Bryophytes. Plant Biol 6(5), 545–554.PubMedCrossRefGoogle Scholar
  18. 18.
    Hu, D. and Luo, Z. (2006) Polymorphisms of amplified mitochondrial DNA non-coding regions in Diospyros spp. Scientia Horticulturae 109, 275–281.CrossRefGoogle Scholar
  19. 19.
    Deng, K.J., Yang, Z.J, Liu, C., Zhao, W., Feng, J., Ren, Z.L. (2007) Identification and phylogenetic application of unique nucleotide sequence of nad7 intron 2 in Rhodiola (Crassulaceae) species. Yi Chuan 29, 371–375.PubMedGoogle Scholar
  20. 20.
    White, T.J., Bruns, T., Lee, S., and Taylor, J. (1990) In, M. A., Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols. A guide to methods and applications: Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. San Diego: Academic Press (pp. 315–322)Google Scholar
  21. 21.
    Jigden, B., Wang T., Kim, M.K., Kim, Y.J., In, J.G., Yang, D.K. (2010) Authentication of the Oriental Medicinal Plant Ligusticum tenuissimum (Nakai) Kitagawa (Korean Go-Bon) by Multiplex PCR. Planta Med 76. 648–651.PubMedCrossRefGoogle Scholar
  22. 22.
    Kuzoff, R.K., Sweere, J.A., Soltis, D.E., Zimmer, E.A. (1998) The phylogenetic potential of entire 26rDNA sequences in plants. Mol Biol Evol 15, 251–263.PubMedGoogle Scholar
  23. 23.
    Wolters, J. and Erdmann, V.A. (1988) Compilation of 5S rRNA and 5S rRNA gene sequences. Nucleic Acids Research 16, Suppl. 1–70.Google Scholar
  24. 24.
    Taberlet, P., Gielly, L., Pautou, G. and Bouvet, J. (1991) Universal primer for amplification of three non-coding region of chloroplast DNA. Plant Molecular Biology 17, 1105–1109.PubMedCrossRefGoogle Scholar
  25. 25.
    Khidir, W., Hilu. and Hongping, Liang. (1997) Tne matK gene : Sequence variation and application in plant systematic. American Journal of Botany 84(6), 830–839.Google Scholar
  26. 26.
    Saltonstall, K. (2001) A set of primers for amplification of non-coding regions of chloroplast DNA in the grasses. Molecular Ecology Notes 1, 76–78.CrossRefGoogle Scholar
  27. 27.
    Dumolin-Lapegue, S., Pemonge, M.H., Petit, R.J. (1997) An enlarged set of consensus primers for the study of organelle DNA in plants. Mol. Ecol 6, 393–397.PubMedCrossRefGoogle Scholar
  28. 28.
    Duminil, J., Pemonge, M.H. and Petit, J. (2002) A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA. Mol. Ecol 2, 428–430.CrossRefGoogle Scholar
  29. 29.
    Edwards. K., Johnstone, C. and Thompson, C. (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucl Acid Res 19, 1349.CrossRefGoogle Scholar
  30. 30.
    Wendel, J.F., Schnabel, A., Seelanan, T. (1995) Bidirectional inter locus concerted evolution following alloploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA 92, 280–284.PubMedCrossRefGoogle Scholar
  31. 31.
    Booy, G., van der Schoot, J., Vosman, B. (2000) Heterogeneity of the internal transcribed spacer 1 (ITS1) in Tulipa (Liliaceae). Plant Sys Evol 255, 29–41.CrossRefGoogle Scholar
  32. 32.
    Kress, W.J., Wurdack, K.J., Zimmer, E.A., Weight, L.A., Janzen, D.H. (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 102, 8369–8374.PubMedCrossRefGoogle Scholar
  33. 33.
    Jigden, B., Wang, H., Kim, Y.J., Noh, J.H., Lee, J.I. and Yang, D.C. (2010) Development of a Multiplex Polymerase Chain Reaction Method for Simultaneous Detection of Four Cimicifuga Species. Crop Sci 50, 1961–1966.CrossRefGoogle Scholar
  34. 34.
    Newton, C.R., Graham, A., Heptinstall, L.E., Powell, S.J., Summers, C., Kalsheker, N., Smith, J.C. and Markham, A.F. (1989) Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res 17, 2503–2516.PubMedCrossRefGoogle Scholar
  35. 35.
    In, J.G., Kim, M.K., Lee, O.K., Kim, Y.J., Lee, B.S., Kim, S.Y., Kwon, W.S. and Yang, D.C. (2010) Molecular Identification of Korean Mountain Ginseng Using an Amplification Refractory Mutation System (ARMS). J. Ginseng Res 34, 41–46.CrossRefGoogle Scholar
  36. 36.
    Gielly, L., and Taberlet, P. (1994) The Use of Chloroplast DNA to Resolve Plant Phylogenies: Noncoding versus rbcL Sequences. Biol. Evol 11 769777.Google Scholar
  37. 37.
    Soltis, D.E., Kuzoff, R.K., Mort, M.E., Zanis, M., Fishbein, M., Hufford, L., Koontz, J. and Arroyo, M.K. (2001) Elucidating deep-level phylogenetic relationships in Saxifragaceae using sequences for six chloroplastic and nuclear DNA regions. Ann. Mo. Bot. Gard 88, 669–693.CrossRefGoogle Scholar
  38. 38.
    Shaw, J., Lickey, E.B., Beck, J.T., Farmer, S.B., Liu, W., Miller, J., Siripun, K.C., Winder, C.T., Schilling, E.E., and Small, R.L. (2005) The Tortoise and the hare II: Relative utility of 21 noncoding chloroplast DNA sequences for Phylogenetic analysis1. Am. J. Bot 92, 142–166.PubMedCrossRefGoogle Scholar
  39. 39.
    Blaxter, M.L. (2004) The Tortoise and the hare II: Relative utility of 21 noncoding chloroplast DNA sequences for Phylogenetic analysis1. Proc. R. Soc. London 359, 669–679.Google Scholar
  40. 40.
    Lahaye, R., van der Bank, M., Bogarin, D., Warner, J., Pupulin, F., Gigot, G., Maurin, O., Duthoit, S., Barraclough, T.G. and Savolaine, V. (2008) DNA barcoding the floras of biodiversity hotspots. Proc Natl Sci USA 105, 2923–2928.CrossRefGoogle Scholar
  41. 41.
    Wolfe, K.H., Li, W.H., and Sharp, P.M. (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. USA 84, 9054–9058.PubMedCrossRefGoogle Scholar
  42. 42.
    Adams, K.L., and Palmer, J.D. (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol. Phylogenet. Evol 29, 380–395.PubMedCrossRefGoogle Scholar
  43. 43.
    Plante, W.G., I, Lang, B.F., Kuck, U., Burger, G. (1994) Complete sequence of the mitochondrial DNA of the chlorophyte alga Protheca wickerhamii. Gene content and genome organization. J. Mol. Biol 18, 75–86.Google Scholar
  44. 44.
    Bonen, L., Wiliams, K., Bird, S., Wood, C. (1994) The NADH dehydrogenase subunit 7 gene is interrupted by four group II introns in the wheat mitochondrial genome. Mol. Gen. Genet 244, 81–89.PubMedCrossRefGoogle Scholar
  45. 45.
    Preis, D., van der Pas, J.C., Nehls, U., Rohlen, D.A., Sackmann, U., Jahnke, U., Weiss, H. (1990) The 49 K subunit of NADH: ubiquinone reductase (complex I) frome Neurospora crassa mitochondria: primary structure of the gene and the gene and the protein. Curr. Genet 18, 59–64.PubMedCrossRefGoogle Scholar
  46. 46.
    Fearnley, I.M., Runswick, M.J., Walker, J.E. (1993) A homologue of the nuclear coded 49 kb submit of bovine mitochondrial NADH-ubiquinone reductase is coded in chloroplast DNA. EMBO J 8, 665–672.Google Scholar
  47. 47.
    Procaccio, V., de Sury, R., Martinez, P., Depetris, D., Rabilloud, T., Soularue, P., Lunardi, J., Issartel, J. (1998) Mapping to 1q23 of the human gene (NDUFS2) encoding the 49-kDa subunit of the mitochondrial respiratory complex I and immunodetection of the mature protein in mitochondria, Mamm. Genome 9, 482–484.Google Scholar
  48. 48.
    Wang, H., Hua, S., Kwon, W.S., Jin, H., and Yang, D.C. (2009) Molecular identification of the Korean ginseng cultivar “Chunpoong” using the mitochondrial nad7 intron 4 region. Mitochondrial DNA. 20(2–3); 41–45PubMedGoogle Scholar
  49. 49.
    Chen, S., Yao, H., Han, J., Liu, C., Song, J., Shi, L., Zhu, Y., Ma, X., Gao, T., Pang, X., Luo, K., Li, Y., Li, X., Jia X., Lin, Y., Leon, C. (2010) Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species. PLoS ONE 5(1), 8613.CrossRefGoogle Scholar
  50. 50.
    Cho, Y., Mower, J.P., Qiu, Y.L. and Palmer, J.D. (2004) Mitochondrial substitution rates are extraordinarily elevated and variable within a genus of flowering plants. Proc. Natl. Acad. Sci.USA 101, 17741–17746.PubMedCrossRefGoogle Scholar
  51. 51.
    Cho, Y., Qiu, Y.L., Kuhlman, P. and Palmer, J.D. (1998) Explosive invasion of plant mitochondria by a group I intron. Proc. Natl. Acad. Sci.USA 95, 14244–14249.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhang, W., Wendel, J.F. and Clark, L.G. (1997) Bamboozled again! Inadvertent isolation of fungal rDNA sequences from bamboos. Mol. Phylogenet. Evol 8, 205–217.PubMedCrossRefGoogle Scholar
  53. 53.
    Cullings, K.W. and Vogler, D.R. (1998) A 5.8S nuclear ribosomal RNA gene sequence database. Mol. Ecol 7, 919–923.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Oriental Medicinal Materials and Processing, College of Life ScienceKyung Hee UniversitySuwonSouth Korea

Personalised recommendations