Skip to main content

Comprehensive DNA Methylation Profiling of Human Repetitive DNA Elements Using an MeDIP-on-RepArray Assay

  • Protocol
  • First Online:
Mobile Genetic Elements

Part of the book series: Methods in Molecular Biology ((MIMB,volume 859))

Abstract

Hypomethylation of repetitive DNA elements is a common epigenetics event in cancer. Although it is believed that this hypomethylation impacts chromosomal and transcriptional stability of the genome, the extent of repetitive sequences contribution to the development and progression of human cancers remains to be clarified. Repetitive sequences have largely been ignored by genome-wide studies, and thus little is known about the DNA methylation profiles of different repetitive DNA elements types. As a step toward investigating epigenetic landscape of repetitive DNA, we have developed a repeat-specific DNA microarray called RepArray. The RepArray comprises 236 prototypic oligonucleotides that span the main repetitive elements families found in the human genome. Combined to a methylated DNA immunoprecipitation (MeDIP) approach, RepArray allows depicting simultaneously the global trends that affect multiple repeat classes through the analysis of a restricted number of targets. Here, we present the MeDIP-on-RepArray protocol as it was established in our laboratory to delineate DNA methylation changes after chemical or genetic disruption of DNA methyltransferase activity in cells. It might serve as a workflow guideline for screening DNA methylation changes on repetitive elements during development and aging, among tissues and in various types of stress or pathological situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson AS, Power BE, Molloy PL (2007) DNA hypomethylation and human diseases. Biochim Biophys Acta 1775 (1):138–162. doi:S0304-419X(06)00056-4

    PubMed  CAS  Google Scholar 

  2. Hedges DJ, Deininger PL (2007) Inviting instability: Transposable elements, double-strand breaks, and the maintenance of genome integrity. Mutat Res 616 (1–2):46–59. doi:S0027-5107(06)00333-2

    PubMed  CAS  Google Scholar 

  3. Eymery A, et al. (2009) A transcriptomic analysis of human centromeric and pericentric sequences in normal and tumor cells. Nucleic Acids Res 37 (19):6340–6354. doi:gkp639

    Article  PubMed  CAS  Google Scholar 

  4. Rodriguez J, et al. (2008) Genome-wide tracking of unmethylated DNA Alu repeats in normal and cancer cells. Nucleic Acids Res 36 (3):770–784. doi:gkm1105

    Article  PubMed  CAS  Google Scholar 

  5. Yang AS, et al. (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32 (3):e38. doi:10.1093/nar/gnh032/3/e38

    Article  PubMed  Google Scholar 

  6. Weisenberger DJ, et al. (2005) Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 33 (21):6823–6836. doi:33/21/6823

    Article  PubMed  CAS  Google Scholar 

  7. Roman-Gomez J, et al. (2008) Repetitive DNA hypomethylation in the advanced phase of chronic myeloid leukemia. Leuk Res 32 (3):487–490. doi:S0145-2126(07)00307-4

    Article  PubMed  CAS  Google Scholar 

  8. Choi SH, et al. (2009) Changes in DNA methylation of tandem DNA repeats are different from interspersed repeats in cancer. Int J Cancer 125 (3):723–729. doi:10.1002/ijc.24384

    Article  PubMed  CAS  Google Scholar 

  9. Horard B, et al. (2009) Global analysis of DNA methylation and transcription of human repetitive sequences. Epigenetics 4 (5):339–350. doi:9284

    Article  PubMed  CAS  Google Scholar 

  10. Weber M, Schubeler D (2007) Genomic ­patterns of DNA methylation: targets and function of an epigenetic mark. Curr Opin Cell Biol 19 (3):273–280. doi:S0955-0674(07)00063-4

    Article  PubMed  CAS  Google Scholar 

  11. Weber M, et al. (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37 (8):853–862. doi:ng1598

    Article  PubMed  CAS  Google Scholar 

  12. Mohn F, et al. (2009) Methylated DNA immunoprecipitation (MeDIP). Methods Mol Biol 507:55–64. doi:10.1007/978-1-59745-522-0_5

    Article  PubMed  CAS  Google Scholar 

  13. Sorensen AL, Collas P (2009) Immunoprecipitation of methylated DNA. Methods Mol Biol 567:249–262. doi:10.1007/978-1-60327-414-2_16

    Article  PubMed  Google Scholar 

  14. Rouillard JM, Zuker M, Gulari E (2003) OligoArray 2.0: design of oligonucleotide probes for DNA microarrays using a thermodynamic approach. Nucleic Acids Res 31 (12):3057–3062

    Article  PubMed  CAS  Google Scholar 

  15. Jordan A, Bisgrove D, Verdin E (2003) HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J 22 (8):1868–1877. doi:10.1093/emboj/cdg188

    Article  PubMed  CAS  Google Scholar 

  16. Vissel B, Choo KH (1987) Human alpha satellite DNA – consensus sequence and conserved regions. Nucleic Acids Res 15 (16):6751–6752

    Article  PubMed  CAS  Google Scholar 

  17. Moyzis RK, et al. (1987) Human chromosome-specific repetitive DNA sequences: novel markers for genetic analysis. Chromosoma 95 (6):375–386

    Article  PubMed  CAS  Google Scholar 

  18. Cooke HJ, Hindley J (1979) Cloning of human satellite III DNA: different components are on different chromosomes. Nucleic Acids Res 6 (10):3177–3197

    Article  PubMed  CAS  Google Scholar 

  19. Moyzis RK, et al. (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, ­present at the telomeres of human chromosomes. Proc Natl Acad Sci U S A 85 (18):6622–6626

    Article  PubMed  CAS  Google Scholar 

  20. Espada J, et al. (2004) Human DNA methyltransferase 1 is required for maintenance of the histone H3 modification pattern. J Biol Chem 279 (35):37175–37184. doi:10.1074/jbc.M404842200

    Article  PubMed  CAS  Google Scholar 

  21. Kondo Y, et al. (2004) Chromatin immunoprecipitation microarrays for identification of genes silenced by histone H3 lysine 9 methylation. Proc Natl Acad Sci USA 101 (19):7398–7403. doi:10.1073/pnas.0306641101 (pii)

    Article  PubMed  CAS  Google Scholar 

  22. Jacinto, F.V., et al. (2007) Discovery of epigenetically silenced genes by methylated DNA immunoprecipitation in colon cancer cells. Cancer Res 67(24): p. 11481–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr N. Vassetzky, Dr G. Fourel, Pr. P. Barbry, Dr. J. Puechberty, Dr G. Roizes, Pr. C. Vourc’h, Dr F. Devaux, and Pr C. Gautier for their contribution in developing the oligoarray RepArray and the computational tools. This work was supported by European Union 6th framework program grant RISCRAD; ARECA and EpiPro framework programs from Canceropole Lyon Auvergne Rhône Alpes and the Association pour la Recherche sur le Cancer and the Ligue Nationale contre le Cancer (“Equipe Labellisée”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béatrice Horard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gilson, E., Horard, B. (2012). Comprehensive DNA Methylation Profiling of Human Repetitive DNA Elements Using an MeDIP-on-RepArray Assay. In: Bigot, Y. (eds) Mobile Genetic Elements. Methods in Molecular Biology, vol 859. Humana Press. https://doi.org/10.1007/978-1-61779-603-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-603-6_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-602-9

  • Online ISBN: 978-1-61779-603-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics