Skip to main content

Phospholipases in Food Industry: A Review

  • Protocol
  • First Online:
Lipases and Phospholipases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 861))

Abstract

Mammal, plant, and mainly microbial phospholipases are continuously being studied, experimented, and some of them are even commercially available at industrial scale for food industry. This is because the use of phospholipases in the production of specific foods leads to attractive advantages, such as yield improvement, energy saving, higher efficiency, improved properties, or better quality of the final product. Furthermore, biocatalysis approaches in the food industry are of current interest as non-pollutant and cleaner technologies. The present chapter reviews the most representative examples of the use of phospholipases in food industry, namely edible oils, dairy, and baking products, emulsifying agents, as well as the current trend to the development of novel molecular species of phospholipids with added-value characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo Z, Vikbjerg AF, Xuebing X (2005) Enzymatic modification of phospholipids for functional applications and human nutrition. Biotechnol Adv 23:203–259

    Article  PubMed  CAS  Google Scholar 

  2. Richmond GS, Smith TK (2011) Phospho-lipases A1. Int J Mol Sci 12:588–612

    Article  PubMed  CAS  Google Scholar 

  3. Ullmann (2003) Ullmann’s encyclopedia of industrial chemistry: enzymes. Wiley-VCH, Weinheim

    Google Scholar 

  4. Iwasaki Y, Yamane T (2002) Phospholipases in enzyme engineering of phospholipids for food, cosmetics, and medical applications. In: Kuo TM, Gardner HW (eds) Lipid biotechnology. Marcel Dekker Inc, New York

    Google Scholar 

  5. Ramrakhiani L, Chand S (2011) Recent progress on phospholipases: different sources, assay methods, industrial potential and pathogenicity. Appl Biochem Biotechnol. doi:10.1007/s12010-011-9190-6

  6. Song JK, Han JJ, Rhe JS (2005) Phospho-lipases: occurrence and production in microorganisms, assay for high-throughput screening, and gene discovery from natural and man-made diversity. J Am Chem Soc 82:691–705

    Article  CAS  Google Scholar 

  7. Soldatova L, Kochoumian L, King TP (1993) Sequence similarity of a hornet (D. maculate) venom allergen phospholipase A1 with mammalian lipases. FEBS Lett 320:145–149

    Article  PubMed  CAS  Google Scholar 

  8. D’Arrigo P, Servi S (1997) Using phospholipases for phospholipid modification. Trends Biotechnol 15:90–96

    Article  Google Scholar 

  9. Mishra MK, Kumaraguru T, Sheelu G et al (2009) Lipase activity of Lecitase® Ultra: characterization and applications in enantioselective reactions. Tetrahedron-Asymmetr 20:2854–2860

    Article  CAS  Google Scholar 

  10. Hoier E, Lilbaek H, Broe ML et al (2006) Enhancing cheese yield by phospholipase treatment of cheese milk. Aust J Dairy Technol 61:179–182

    Google Scholar 

  11. Schaloske RH, Dennis EA (2006) The phospholipase A2 superfamily and its group numbering system. Biochim Biophys Acta 1761:1246–1259

    PubMed  CAS  Google Scholar 

  12. Mansfeld J (2009) Plant phospholipases A2: perspectives on biotechnological applications. Biotechnol Lett 31:1373–1380

    Article  PubMed  CAS  Google Scholar 

  13. Dijkstra AJ (2011) Enzymatic degumming. Lipid Technol 23:36–38

    Article  CAS  Google Scholar 

  14. Sirbu A, Paslaru V (2006) Effect of lysomax formulation on rheological behaviour of dough. J Agroalim Proc Technol 12:199–208

    CAS  Google Scholar 

  15. Chun B, Kishimura H, Kanzawa H et al (2010) Application of supercritical carbon dioxide for preparation of starfish phospholipase A2. Process Biochem 45:689–693

    Article  CAS  Google Scholar 

  16. Kishimura H, Hayashi K (2005) Charac-terization of phospholipase A2 from the pyloric ceca of two species of starfish. Coscinasterias acutispina and Plazaster borealis. Food Chem 92:407–411

    Article  CAS  Google Scholar 

  17. Ciofalo V, Barton N, Kreps J et al (2006) Safety evaluation of a lipase enzyme preparation, expressed in Pichia pastoris, intended for use in the degumming of edible vegetable oil. Regul Toxicol Pharmacol 45:1–8

    Article  PubMed  CAS  Google Scholar 

  18. Ulbrich-Hofmann R, Lerchner A, Oblozinsky M et al (2005) Phospholipase D and its application in biocatalysis. Biotechnol Lett 27:535–543

    Article  PubMed  CAS  Google Scholar 

  19. Nielsen K (1960) The composition of the difficultly extractable soybean phosphatides. J Am Oil Chem Soc 37:217–219

    Article  CAS  Google Scholar 

  20. Dijkstra A, Van Opstal M (1989) The total degumming process. J Am Oil Chem Soc 66:1002–1009

    Article  CAS  Google Scholar 

  21. Ringers HJ, Seegers JC (1977) Degumming process for triglyceride oils. US Patent US4049686

    Google Scholar 

  22. Dijkstra AJ (1993) Degumming, refining, washing and drying fats and oils. Applewhite TH (ed), AOCS Press, Illinois, Proceedings of the World Conference on Oilseed Technology and Utilization

    Google Scholar 

  23. Dixit S, Kanakraj S (2010) Enzymatic degumming of feedstocks’s (vegetable oil) for bio-diesel—A review. J Eng Sci Manag Educ 3:57–59

    Google Scholar 

  24. Buchold H, Boensch R, Schroeppel J (1994) Process for enzymatically degumming vegetable oil. EU Patent 0654527

    Google Scholar 

  25. Dijkstra AJ (2010) Enzymatic degumming. Eur J Lipid Sci Technol 112:1178–1189

    Article  CAS  Google Scholar 

  26. Cowan D (2009) Lipases for the production of food components. In: Whitehurst RJ, Van Oort M (eds) Enzymes in food technology. Wiley-Blackwell, Oxford, UK

    Google Scholar 

  27. Clausen K (2001) Enzymatic oil-degumming by a novel microbial phospholipase. Eur J Lipid Sci Technol 103:333–340

    Article  CAS  Google Scholar 

  28. Dahlke K, Buchold H, Münch EM et al (1995) First experiences with enzymatic oil refining. Inform 6:1284–1291

    Google Scholar 

  29. Winter BH, Titze K, Marschner V (1998) Application of phospholipases in the edible oil industry. Lipid/Fett 100:152–156

    Article  CAS  Google Scholar 

  30. Munch WM (2001) Practical experience of enzymatic degumming. Wilson R (ed) AOCS Press, Illinois, Proceedings of the World Conference on Oilseed Processing and Utilization

    Google Scholar 

  31. Dayton CLG (2008) Enzymatic degumming of vegetable oils. 99th AOCS Annual Meeting & Expo. Seattle

    Google Scholar 

  32. Yang J, Wang Y, Yang B et al (2006) Degumming of vegetable oil by a new microbial lipase. Food Technol Biotechnol 44:101–104

    CAS  Google Scholar 

  33. Yang B, Rong Z, Yang JG et al (2008) Insight into the enzymatic degumming process of soybean oil. J Am Oil Chem Soc 85:421–425

    Article  CAS  Google Scholar 

  34. Cowan D (2010) Lipases for the productions of foods components. In: Whitehurst RJ, Oort MV, editors. Enzymes in Food Technology. p. 332–359

    Google Scholar 

  35. Cowan WD, Holm HC (2007) Bioprocessing of vegetable oils. In: Proceedings of the 98th AOCS Conference. Quebec.

    Google Scholar 

  36. Dayton CLG, Rosswurm EM, Galhardo F (2009) Enzymatic Degumming Utilizing a Mixture of PLA and PLC Phospholipases with Reduced Reaction Time. US Patent 20080182322

    Google Scholar 

  37. Dijkstra AJ (2009) Recent developments in edible oil processing. Eur J Lipid Sci Technol 111:857–864

    Article  CAS  Google Scholar 

  38. Goesaert H, Brijs K, Veraverbeke WS et al (2004) Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends Food Sci Technol 16:12–30

    Article  Google Scholar 

  39. Van Oort M (2009) Enzymes in bread making. In: Whitehurst RJ, Van Oort M (eds) Enzymes in food technology. Wiley-Blackwell, Oxford, UK

    Google Scholar 

  40. Castello PJS, Potus J, Baret JL et al (1998) Effect of exogenous lipase on dough lipids during mixing of wheat flours. Cereal Chem 75:595–601

    Article  CAS  Google Scholar 

  41. Gan Z, Ellis PR, Schofield JD (1995) Gas cell stabilisation and Gas retention in wheat bread dough. J Cereal Sci 21:215–230

    Article  CAS  Google Scholar 

  42. Krog N (1977) Functions of emulsifiers in food systems. J Am Oil Chem Soc 54:124–131

    Article  CAS  Google Scholar 

  43. Christiansen J, Vind K, Borch H et al (2003) Generation of lipases with different specificities and functionalities in baking. Proceedings of the 3th symposium on Enzymes in Grain Processing. Leuven 269–274

    Google Scholar 

  44. Sahi S (2004) New lipase functionality in bakery products. Using cereal science and technology for the benefit of consumers. Proceedings of the 12th International ICC Cereal and Bread Congress, Harrogate, 428–433

    Google Scholar 

  45. Sorensen JF, Mikkelsen R, Poulsen CH et al (2010) Enzymatic generation of functional lipids from cereals or cereal bi-streams. Patent WO/2010/081869

    Google Scholar 

  46. Zhao X, Shi-Jian D, Tao G et al (2010) Influence of phospholipase A2 (PLA2)-treated dried egg yolk on wheat dough rheological properties. LWT- Food Sci Technol 43:45–51

    Article  CAS  Google Scholar 

  47. De Maria L, Vind J, Oxenbøll K et al (2007) Phospholipases and their industrial applications. App Microbiol Biotechnol 74:290–300

    Article  CAS  Google Scholar 

  48. Inoue S, Ota S, Komae (1986) Bread or other careal-based food improver composition involving the addition of phospholipase A to the flour. US Patent 4567046

    Google Scholar 

  49. Hille JDR (2007) Cakezyme: unlimited opportunities for new product development in the cake industry. Alimentaria 388:91–92

    Google Scholar 

  50. Hille JDR, Parnell MD (2001) Bread improver comprising bile salt and phospholipase A. WO/2001/047363 Patent

    Google Scholar 

  51. Borch K, Erlandsen L, Vind J et al (2004) Variant lipolytic ensymes. WO/2004/099400 Patent

    Google Scholar 

  52. Argov N, Lemay DG, German JB (2008) Milk fat globule structure and function: nanoscience comes to milk production. Trends Food Sci Technol 19:617–623

    Article  CAS  Google Scholar 

  53. Lilbaek HM, Fatum TM, Ipsen R et al (2007) Modification of milk and whey surface properties by enzymatic hydrolysis of milk phospholipids. J Agric Food Chem 55:2970–2978

    Article  PubMed  Google Scholar 

  54. Bourlieu C, Bouhallab S, Lopez C (2009) Biocatalyzed modifications of milk lipids: applications and potentialities. Trends Food Sci Technol 20:458–469

    Article  CAS  Google Scholar 

  55. Van Nieuwenhuyzen W, Tomas MC (2008) Update on vegetable lecithin and phospholipid technologies. Eur J Lipid Sci Technol 110:472–486

    Article  Google Scholar 

  56. Euston SR (2008) Emulsifiers in dairy products and dairy substitutes. In: Hasenhuettl GL, Hartel RW (eds) Food emulsifiers and their applications. Springer, New York

    Google Scholar 

  57. Fedotova Y, Lencki RW (2008) The effect of phospholipids on milkfat crystallization behavior. J Am Oil Chem Soc 85:205–212

    Article  CAS  Google Scholar 

  58. Law BA (2009) Enzymes in dairy products manufacture. In: Van Oort M, Whitehurst RJ (eds) Enzymes in food technology. Wiley-Blackwell, Oxford, UK

    Google Scholar 

  59. Joshi A, Paratkar SG, Thorat BN (2006) Modification of lecithin by physical, chemical and enzymatic methods. Eur J Lipid Sci Technol 108:363–373

    Article  CAS  Google Scholar 

  60. Nielsen P, Høier E (2009) Environmental assessment of yield improvements obtained by the use of the enzyme phospholipase in mozzarella cheese production. Int J Life Cycle Assess 14:137–143

    Article  CAS  Google Scholar 

  61. Lilbaek HM, Broe ML, Hoier E et al (2006) Improving the yield of mozzarella cheese by phospholipase treatment of milk. J Dairy Sci 89:4114–4125

    Article  PubMed  CAS  Google Scholar 

  62. Berlin J (2002) Environmental life cycle assessment (LCA) of Swedish semi-hard cheese. Int Dairy J 12:939–953

    Article  Google Scholar 

  63. Nielsen M (2002) Process for producing cheese.US Patent 6399121

    Google Scholar 

  64. Madkor S, Raleigh N (2004) Process for producing low fat cheese.US Patent 2004/0146604 A1

    Google Scholar 

  65. Fatum T, Higgins D (2008) Process For Producing Cheese. US Patent US2008/0299252 A1

    Google Scholar 

  66. Soe JB, Larsen NE (2010) Enzymatic modification of phospholipids in milk, and the effect of UHT-milk processing. 101st AOCS Annual Meeting & Expo. Phoenix, USA

    Google Scholar 

  67. Nielsen M, Lilbaek H (2011) Method for producing fractions of a milk composition.EU Patent EP2283732 (A2)

    Google Scholar 

  68. Hoof M, Segers JC (2005) Food composition suitable for shallow frying comprising sunflower lecithin.EU Patent EP1607003

    Google Scholar 

  69. Higgins D, Fatum TM, Soerensen TL et al (2009) Method for producing ice cream.US Patent 20090291166

    Google Scholar 

  70. Palacios L, Wang T (2005) Egg-yolk lipid fractionation and lecithin characterization. J Am Oil Chem Soc 82:571–578

    Article  CAS  Google Scholar 

  71. Kim MR, Shim JY, Park KH et al (2009) Optimization of the enzymatic modification of egg yolk by phospholipase A2 to improve its functionality for mayonnaise production. LWT- Food Sci Technol 42:250–255

    Article  CAS  Google Scholar 

  72. Kawai S (2004) Characterization of diacylglycerol oil mayonnaise emulsified using phospholipase A2-treated egg yolk. J Am Oil Chem Soc 81:993–998

    Article  CAS  Google Scholar 

  73. Buxmann W, Bindrich U, Heinz V et al (2010) Influencing emulsifying properties of egg yolk by enzymatic modification by phospholipase D from streptomyces chromofuscus: Part 1: technological properties of incubated egg yolk. Coll Surfac B: Biointerfaces 76:186–191

    Article  CAS  Google Scholar 

  74. Jaekel T, Ternes W (2009) Changes in rheological behaviour and functional properties of hen’s egg yolk induced by processing and fermentation with phospholipases. Int J Food Sci Technol 44:567–573

    Article  CAS  Google Scholar 

  75. Saitou C, Ouchi K, Ohta S (1992) Process for modifying the properties of egg yolk. US Patent 5080911

    Google Scholar 

  76. Moolenaar WH, Kranenburg O, Postma FR et al (1997) Lysophosphatidic acid: G-protein signalling and cellular responses. Curr Opin Cell Biol 9:168–173

    Article  PubMed  CAS  Google Scholar 

  77. Sabiha A (2009) LTD ANP (2009) lysophospholipids and their role in enhancing digestion and absorption. Avitech Technical Bull, September

    Google Scholar 

  78. Wang X, Devaiah SP, Zhang W et al (2006) Signaling functions of phosphatidic acid. Progr Lipid Res 45:250–278

    Article  CAS  Google Scholar 

  79. Shnigir VM, Kisel MA (2004) Transformation of phospholipids by cabbage phospholipase D in mixed micelles containing 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Appl Biochem Microbiol 40:225–230

    Article  CAS  Google Scholar 

  80. Shenfeld A, Shinitzky M (2002) Method for the treatment of cancer using phosphatidic acid-comprising compositions. US Patent 6358937

    Google Scholar 

  81. Aoki J, Inoue A, Okudaira S (2008) Two pathways for lysophosphatidic acid production. Biochim Biophys Acta 1781:513–518

    PubMed  CAS  Google Scholar 

  82. Moolenaar WH, Meeteren LA, Giepmans BNG (2004) The ins and outs of lysophosphatidic acid signaling. Bioessays 26:870–881

    Article  PubMed  CAS  Google Scholar 

  83. Deng W, Balazs L, Wang DA et al (2002) Lysophosphatidic acid protects and rescues intestinal epithelial cells from radiation- and chemotherapy-induced apoptosis. Gastroenterology 123:206–216

    Article  PubMed  CAS  Google Scholar 

  84. Schuurmans FMAH, Tijmes J, Umeda M et al (1994) Monoclonal antibody to phosphatidylserine inhibits Na+/K+-ATPase activity. Biochim Biophys Acta 1194:155–165

    Article  Google Scholar 

  85. Cenacchi B, Bertoldin T, Farina C (1993) Cognitive decline in the elderly: a double-blind, placebo-controlled multicenter study on efficacy of phosphatidylserine administration. Aging Clin Exp Res 5:123–133

    CAS  Google Scholar 

  86. Juneja LR, Taniguchi E, Shimizu S et al (1992) Increasing productivity by removing choline in conversion of phosphatidylcholine to phosphatidylserine by phospholipase D. J Ferment Bioeng 5:357–361

    Article  Google Scholar 

  87. Hosokawa M, Shimatani T, Kanada T et al (2000) Conversion to docosahexaenoic acid-containing phosphatidylserine from squid skin lecithin by phospholipase D-mediated transphosphatidylation. J Agric Food Chem 48:4550–4554

    Article  PubMed  CAS  Google Scholar 

  88. Schlame M, Rua D, Greenberg ML (2000) The biosynthesis and functional role of cardiolipin. Progr Lipid Res 39:257–288

    Article  CAS  Google Scholar 

  89. Nowicki M, Müller F, Frentzen M (2005) Cardiolipin synthase of Arabidopsis thaliana. FEBS Lett 579:2161–2165

    Article  PubMed  CAS  Google Scholar 

  90. Leiros I, McSweeney S, Hough E (2004) The reaction mechanism of phospholipase D from streptomyces sp. Strain PMF. Snapshots along the reaction pathway reveal a pentacoordinate reaction intermediate and an unexpected final product. J Mol Biol 339:805–820

    Article  PubMed  CAS  Google Scholar 

  91. Cohn J, Kamili A, Wat E et al (2010) Dietary phospholipids and intestinal cholesterol absorption. Nutrients 2:116–127

    Article  PubMed  CAS  Google Scholar 

  92. Adlercreutz P, Lyberg AM, Adlercreutz D (2003) Enzymatic fatty acid exchange in glycero-phospholipids. Eur J Lipid Sci Technol 105:638–645

    Article  CAS  Google Scholar 

  93. Chojnacka A, Gładkowski W, Kiełbowicz G et al (2009) Enzymatic enrichment of egg-yolk phosphatidylcholine with α-linolenic acid. Biotechnol Letters 31:705–709

    Article  CAS  Google Scholar 

  94. Calviello G, Palozza P, Piccioni E (1998) Dietary supplementation with eicosapentaenoic and docosahexaenoic acid inhibits growth of Morris hepatocarcinoma 3924A in rats: Effects on proliferation and apoptosis. Int J Cancer 75:699–705

    Article  PubMed  CAS  Google Scholar 

  95. Huggins KW, Curtiss LK, Gebre AK (1998) Effect of long chain polyunsaturated fatty acids in the sn-2 position of phosphatidylcholine on the interaction with recombinant high density lipoprotein apolipoprotein A-I. J Lipid Res 39:2423–2431

    PubMed  CAS  Google Scholar 

  96. Magret V, Elkhalil L, Nazih-Sanderson F et al (1996) Entry of polyunsaturated fatty acids into the brain: evidence that high-density lipoprotein-induced methylation of phosphatidylethanolamine and phospholipase A2 are involved. Biochem J 316:805–811

    PubMed  CAS  Google Scholar 

  97. Bayon Y, Croset M, Lagarde M et al (1997) Polyunsaturated fatty acid based drugs US Patent 5654290

    Google Scholar 

  98. Garcia HS, Kim IH, Lopez-Hernandez A et al (2008) Enrichment of lecithin with n-3 fatty acids by acidolysis using immobilized phospholipase A1. Grasas y Aceites 59:368–374

    Article  CAS  Google Scholar 

  99. Park CW, Kwon SJ, Han JJ et al (2002) Transesterification of phosphatidylcholine with eicosapentaenoic acid ethyl ester using phospholipase A2 in organic solvent. Biotechnol Lett 22:147–150

    Article  Google Scholar 

  100. Yamamoto Y, Hosokawa M, Miyashita K (2006) Production of phosphatidylcholine containing conjugated linoleic acid mediated by phospholipase A2. J Mol Catal B: Enzymatic 41:92–96

    Article  CAS  Google Scholar 

  101. Koga T, Terao J (1994) Antioxidant activity of a novel phosphatidyl derivative of vitamin E in lard and its model system. J Agric Food Chem 42:1291–1294

    Article  CAS  Google Scholar 

  102. Miyamoto S, Koga T, Terao J (1998) Synthesis of a novel phosphate ester of a vitamin E derivative and its antioxidative activity. Biosci Biotechnol Biochem 62:2463–2466

    Article  PubMed  CAS  Google Scholar 

  103. Nagao A, Terao J (1990) Antioxidant activity of 6-phosphatidyl-l-ascorbic acid. Biochem Biophys Res Comm 172:385–389

    Article  PubMed  CAS  Google Scholar 

  104. Hidaka N, Takami M, Suzuki Y (2008) Enzymatic phosphatidylation of thiamin, pantothenic acid, and their derivatives. J Nutr Sci Vitaminol 54:255–261

    Article  PubMed  CAS  Google Scholar 

  105. Fabiani R, Morozzi G (2010) Anticarcinogenic properties of olive oil phenols: effects on proliferation, apoptosis and differentiation. In: Victor RP, Ronald Ross W (eds) Olives and olive oil in health and disease prevention. Academic Press, San Diego

    Google Scholar 

  106. Mateos R, Pereira-Caro G, Saha S et al (2011) Acetylation of hydroxytyrosol enhances its transport across differentiated Caco-2 cell monolayers. Food Chem 125:865–872

    Article  CAS  Google Scholar 

  107. Yamamoto Y, Kurihara H, Miyashita K et al (2011) Synthesis of novel phospholipids that bind phenylalkanols and hydroquinone via phospholipase D-catalyzed transphosphatidylation. N Biotechnol 28:1–6

    Article  PubMed  CAS  Google Scholar 

  108. Loutrari H, Hatziapostolou M, Skouridou V et al (2004) Perillyl alcohol is an angiogenesis inhibitor. J Pharmacol Exper Therap 311:568–575

    Article  CAS  Google Scholar 

  109. Yamamoto Y, Hosokawa M, Kurihara H et al (2008) Synthesis of phosphatidylated-monoterpene alcohols catalyzed by phospholipase D and their antiproliferative effects on human cancer cells. Bioorg Med Chem Lett 18:4044–4046

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Casado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Casado, V., Martín, D., Torres, C., Reglero, G. (2012). Phospholipases in Food Industry: A Review. In: Sandoval, G. (eds) Lipases and Phospholipases. Methods in Molecular Biology, vol 861. Humana Press. https://doi.org/10.1007/978-1-61779-600-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-600-5_29

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-599-2

  • Online ISBN: 978-1-61779-600-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics