Skip to main content

Thermodynamical Methods for the Optimization of Lipase-Catalyzed Reactions

  • Protocol
  • First Online:
Lipases and Phospholipases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 861))

Abstract

A basic insight on different thermodynamical strategies reported for the optimization of lipase-catalyzed reactions is presented. The significance of selecting the appropriate reaction media in order to enhance selectivity and operational stability of enzymes is discussed. From this analysis, the importance of developing thermodynamic strategies for controlling both the reaction kinetics and equilibrium is emphasized. A theoretical model (Conductor-like Screening Model for Realistic Solvation) for calculating thermodynamic properties in fluid phases is proposed as a powerful tool for predicting equilibrium and kinetic behavior in biocatalytic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zaks A, Klibanov AM (1984) Enzymatic catalysis in organic media at 100°C. Science 224:1249–1251

    Article  PubMed  CAS  Google Scholar 

  2. Zaks A, Klibanov AM (1985) Enzyme-catalyzed processes in organic solvents. Proc Natl Acad Sci USA 82:3192–3196

    Article  PubMed  CAS  Google Scholar 

  3. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246

    Article  PubMed  CAS  Google Scholar 

  4. Fermeglia M, Braiuca P, Gardossi L et al (2006) In silico prediction of medium effects on esterification equilibrium using the COSMO-RS method. Biotechnol Prog 22:1146–1152

    Article  PubMed  CAS  Google Scholar 

  5. Dordick JS (1989) Enzymatic catalysis in monophasic organic solvents. Enzyme Microb Technol 11:194–210

    Article  CAS  Google Scholar 

  6. Ebert C, Gardossi L, Linda P et al (1996) Influence of organic solvents on enzyme chemoselectivity and their role in enzyme-substrate interaction. Tetrahedron 52:4867–4876

    Article  CAS  Google Scholar 

  7. Ke T, Wescott CL, Klibanov AM (1996) Prediction of the solvent dependence of enzymatic prochiral selectivity by means of structure-based thermodynamic calculations. J Am Chem Soc 118:3366–3374

    Article  CAS  Google Scholar 

  8. Wescott CL, Noritomi H, Klibanov AM (1996) Rational control of enzymatic enantioselectivity through solvation thermodynamics. J Am Chem Soc 118:10365–10370

    Article  CAS  Google Scholar 

  9. Castillo RE, Dossat V, Combes D et al (1998) Efficient lipase-catalyzed production of tailor-made emulsifiers using solvent engineering coupled to extractive processing. J Am Oil Chem Soc 75:309–313

    Article  Google Scholar 

  10. Cernia E, Palocci C, Soro S (2000) Solvent engineering modulates stereoselectivity of microbial lipases. In: Alberghina L (ed) Protein engineering for industrial biotechnology, vol 1, 1st edn. Harwood Academic Publishers, London, UK

    Google Scholar 

  11. Bellot JC, Choisnard L, Castillo E et al (2001) Combining solvent engineering and thermodynamic modeling to enhance selectivity during monoglyceride synthesis by lipase-catalyzed esterification. Enzyme Microb Technol 28:362–369

    Article  PubMed  CAS  Google Scholar 

  12. Sandoval G, Marty A, Condoret JS (2001) Thermodynamic activity-based enzyme kinetics: efficient tool for nonaqueous enzymology. AIChE J 47:718–726

    Article  CAS  Google Scholar 

  13. Castillo E, Pezzotti F, Navarro A et al (2003) Lipase-catalyzed synthesis of xylitol monoesters: solvent engineering approach. J Biotechnol 102:251–259

    Article  PubMed  CAS  Google Scholar 

  14. Janssen AEM, Hadini M, Wessels Boer N et al (1992) The effect of organic solvents on enzymatic esterification of polyols. In: Tramper J (ed) Biocatalysis in non conventional media. Elsevier Science Publishers B.V, The Netherlands

    Google Scholar 

  15. Janssen AEM, Van der Padt A, Vant Riet K (1993) Solvent effects on lipase-catalyzed esterification of glycerol and fatty acids. Biotechnol Bioeng 42:953–962

    Article  PubMed  CAS  Google Scholar 

  16. Castillo E, López-González I, De Regil-Hernández R et al (2007) Enzymatic synthesis of capsaicin analogs and their effect on the T-type Ca2+ channels. Biochem Biophys Res Commun 356:424–430

    Article  PubMed  CAS  Google Scholar 

  17. Watanabe Y, Miyawaki Y, Adachi S et al (2001) Equilibrium constant for lipase-catalyzed condensation of mannose and lauric acid in water-miscible organic solvents. Enzyme Microb Technol 29:494–498

    Article  CAS  Google Scholar 

  18. Kobayashi T, Adachi S (2004) Reaction equilibrium for lipase-catalyzed condensation in organic solvent systems. Biotechnol Lett 26:1461–1468

    Article  PubMed  CAS  Google Scholar 

  19. Guo Z, Xu XB (2006) Lipase-catalyzed glycerolysis of fats and oils in ionic liquids: a further study on the reaction system. Green Chem 8:54–62

    Article  CAS  Google Scholar 

  20. Chen BQ, Guo Z, Tan T et al (2008) Structures of ionic liquids dictate the conversion and selectivity of enzymatic glycerolysis: theoretical characterization by COSMO-RS. Biotechnol Bioeng 99:18–29

    Article  PubMed  CAS  Google Scholar 

  21. Tewari YB, Schantz MM, Vanderah DJ (1999) Thermodynamics of the lipase-catalyzed esterification of 1-dodecanoic acid with (−)-menthol in organic solvents. J Chem Eng Data 44:641–647

    Article  CAS  Google Scholar 

  22. Tewari YB (2000) Thermodynamics of the lipase-catalyzed transesterification of (−)-menthol and dodecyl dodecanoate in organic solvents. J Mol Catal B Enzym 9:83–90

    Article  CAS  Google Scholar 

  23. Tewari YB (1998) Thermodynamics of the lipase-catalyzed esterification of 1-dodecanoic acid and 1-dodecanol in organic solvents. J Chem Eng Data 43:750–755

    Article  CAS  Google Scholar 

  24. Fredenslund A, Jones RL, Prausnitz JM (1975) Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J 21:1086–1099

    Article  CAS  Google Scholar 

  25. Klamt A, Eckert F, Arlt W (2010) COSMO-RS: an alternative to simulation for calculating thermodynamic properties of liquid mixtures. Annu Rev Chem Biomol Eng 1:101–122

    Article  CAS  Google Scholar 

  26. Guo Z, Chen B, López Murillo R et al (2006) Functional dependency of structures of ionic liquids: do substituents govern the selectivity of enzymatic glycerolysis? Org Biomol Chem 4:2772–2776

    Google Scholar 

  27. Mena-Arizmendi A, Alderete J, Aguila S et al (2011) Enzymatic fructosylation of aromatic and aliphatic alcohols by Bacillus subtilis levansucrase: reactivity of acceptors. J Mol Catal B Enzym 70:41–48

    Article  CAS  Google Scholar 

  28. Priego J, Ortiz-Nava C, Carrillo-Morales M et al (2009) Solvent engineering: an effective tool to direct chemoselectivity in a lipase-catalyzed Michael addition. Tetrahedron 65:536–539

    Article  CAS  Google Scholar 

  29. Riva S (2008) Exploiting enzyme chemoselectivity and regioselectivity. In: Carrea G, Riva S (eds) Organic synthesis with enzymes in non-aqueous media. Wiley-VCH Verlag GmbH & Co, KgaA, Weinheim, Germany

    Google Scholar 

  30. Carrea G, Ottolina G, Riva S (1995) Role of solvents in the control of enzyme selectivity in organic media. Trends Biotechnol 13:63–70

    Article  CAS  Google Scholar 

  31. Wolff A, Straathof AAJ, Jongejan JA et al (1997) Solvent induced change of enzyme enantioselectivity: rule or exception? Biocatal Biotransform 15:175–184

    Article  CAS  Google Scholar 

  32. Reslow M, Adlercreutz P, Mattiasson B (1987) Organic solvents for bioorganic synthesis. 1. Optimization of parameters for a chymotrypsin catalyzed process. Appl Microbiol Biotechnol 26:1–8

    Article  CAS  Google Scholar 

  33. Yang F, Weber TW, Gainer JL et al (1997) Synthesis of lovastatin with immobilized Candida rugosa lipase in organic solvents: effects of reaction conditions on initial rates. Biotechnol Bioeng 56:671–680

    Article  PubMed  CAS  Google Scholar 

  34. Klamt A (2005) COSMO-RS: from quantum chemistry to fluid phase thermodynamics and drug design. Elsevier, Amsterdam, The Netherlands

    Google Scholar 

  35. Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edmundo Castillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Castillo, E., Torres-Gavilán, A., Sandoval, G., Marty, A. (2012). Thermodynamical Methods for the Optimization of Lipase-Catalyzed Reactions. In: Sandoval, G. (eds) Lipases and Phospholipases. Methods in Molecular Biology, vol 861. Humana Press. https://doi.org/10.1007/978-1-61779-600-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-600-5_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-599-2

  • Online ISBN: 978-1-61779-600-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics