Skip to main content

Lipases or Esterases: Does It Really Matter? Toward a New Bio-Physico-Chemical Classification

  • Protocol
  • First Online:
Lipases and Phospholipases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 861))

Abstract

Carboxylester hydrolases, commonly named esterases, consist of a large spectrum of enzymes defined by their ability to catalyze the hydrolysis of carboxylic ester bonds and are widely distributed among animals, plants, and microorganisms. Lipases are lipolytic enzymes which constitute a special class of carboxylic esterases capable of releasing long-chain fatty acids from natural water-insoluble carboxylic esters. However, up to now, several unsuccessful attempts aimed at differentiating “lipases” from “esterases” by using various criteria. These criteria were based on the first substrate used chronologically, primary sequence comparisons, some kinetic parameters, or some structural features.

Lipids are biological compounds which, by definition, are insoluble in water. Taking into account this basic physico-chemical criterion, we primarily distinguish lipolytic esterases (L, acting on lipids) from nonlipolytic esterases (NL, not acting on lipids). In view of the biochemical data accumulated up to now, we proposed a new classification of esterases based on various criteria of physico-chemical, chemical, anatomical, or cellular nature. We believe that the present attempt matters scientifically for several reasons: (1) to help newcomers in the field, performing a few key experiments to figure out if a newly isolated esterase is lipolytic or not; (2) to clarify a debate between scientists in the field; and (3) to formulate questions which are relevant to the still unsolved problem of the structure–function relationships of esterases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moss GP (2011) Recommendations on biochemical & organic nomenclature, symbols & terminology etc. IUBMB. http://www.chem.qmul.ac.uk/iubmb/. Accessed 3 February 2011

  2. Arpigny JL, Jaeger KE (1999) Bacterial lipolytic enzymes: classification and properties. Biochem J 343:177–183

    Article  PubMed  CAS  Google Scholar 

  3. Angkawidjaja C, Kanaya S (2006) Family I.3 lipase: bacterial lipases secreted by the type I secretion system. Cell Mol Life Sci 63:2804–2817

    Article  PubMed  CAS  Google Scholar 

  4. Bielen A, Cetkovic H, Long PF et al (2009) The SGNH-hydrolase of streptomyces coelicolor has (aryl)esterase and a true lipase activity. Biochimie 91:390–400

    Article  PubMed  CAS  Google Scholar 

  5. Couto GH, Glogauer A, Faoro H et al (2010) Isolation of a novel lipase from a metagenomic library derived from mangrove sediment from the south Brazilian coast. Genet Mol Res 9:514–523

    Article  PubMed  CAS  Google Scholar 

  6. Roustan JL, Chu AR, Moulin G et al (2005) A novel lipase/acyltransferase from the yeast Candida albicans: expression and characterisation of the recombinant enzyme. Appl Microbiol Biotechnol 68:203–212

    Article  PubMed  CAS  Google Scholar 

  7. Sorokin DY, Jones BE (2009) Improved method for direct screening of true lipase-producing microorganisms with particular emphasis on alkaline conditions. Mikrobiologia 78:144–149

    Google Scholar 

  8. Chahinian H, Nini L, Boitard E et al (2002) Distinction between esterases and lipases: a kinetic study with vinyl esters and TAG. Lipids 37:653–662

    Article  PubMed  CAS  Google Scholar 

  9. Chahinian H, Sarda L (2009) Distinction between esterases and lipases: comparative biochemical properties of sequence-related carboxylesterases. Protein Pept Lett 16:1149–1161

    Article  PubMed  CAS  Google Scholar 

  10. Fojan P, Jonson PH, Petersen MT et al (2000) What distinguishes an esterase from a lipase: a novel structural approach. Biochimie 82:1033–1041

    Article  PubMed  CAS  Google Scholar 

  11. Sarda L, Desnuelle P (1958) Action de la lipase pancréatique sur les esters en émulsion. Biochim Biophys Acta 30:513–521

    Article  PubMed  CAS  Google Scholar 

  12. Ettinger WF, Thukral SK, Kolattukudy PE (1987) Structure of cutinase gene, cDNA, and the derived amino acid sequence from phytopathogenic fungi. Biochemistry 26:7883–7892

    Article  CAS  Google Scholar 

  13. Kolattukudy PE (1984) Cutinases from fungi and pollen. In: Borgström BB (ed) Lipases. Structure, mechanism and genetic engineering. Elsevier, Amsterdam, pp 471–504

    Google Scholar 

  14. Purdy RE, Kolattukudy PE (1975) Hydrolysis of plant cuticle by plant pathogens. Purification, amino acid composition, and molecular weight of two isozymes of cutinase and a nonspecific esterase from Fusarium solani f. pisi. Biochemistry 14:2824–2831

    Article  PubMed  CAS  Google Scholar 

  15. Purdy RE, Kolattukudy PE (1975) Hydrolysis of plant cuticle by plant pathogens. Properties of cutinase I, cutinase II, and a nonspecific esterase isolated from Fusarium solani pisi. Biochemistry 14:2832–2840

    Article  PubMed  CAS  Google Scholar 

  16. Egmond MR, de Vlieg J (2000) Fusarium solani pisi cutinase. Biochimie 82:1015–1021

    Article  PubMed  CAS  Google Scholar 

  17. Martinez C, Nicolas A, van Tilbeurgh H et al (1994) Cutinase, a lipolytic enzyme with a preformed oxyanion hole. Biochemistry 33:83–89

    Article  PubMed  CAS  Google Scholar 

  18. Nicolas A, Egmond M, Verrips CT et al (1996) Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state. Biochemistry 35:398–410

    Article  PubMed  CAS  Google Scholar 

  19. Longhi S, Cambillau C (1999) Structure-activity of cutinase, a small lipolytic enzyme. Biochim Biophys Acta 1441:185–196

    PubMed  CAS  Google Scholar 

  20. Schue M, Maurin D, Dhouib R et al (2010) Two cutinase-like proteins secreted by Mycobacterium tuberculosis show very different lipolytic activities reflecting their physiological function. FASEB J 24:1893–1903

    Article  PubMed  CAS  Google Scholar 

  21. Bjorntorp P, Furman RH (1962) Lipolytic activity in rat epididymal fat pads. Am J Physiol 203:316–322

    PubMed  CAS  Google Scholar 

  22. Hollenberg CH, Raben MS, Astwood EB (1961) The lipolytic response to corticotropin. Endocrinology 68:589–598

    Article  PubMed  CAS  Google Scholar 

  23. Rizack MA (1961) Activation of an epinephrine-sensitive lipolytic activity from adipose tissue by adenosine 3′,5′-phosphate. J Biol Chem 239:392–395

    Google Scholar 

  24. Vaughan M, Berger JE, Steinberg D (1964) Hormone-sensitive lipase and monoglyceride lipase activities in adipose tissue. J Biol Chem 239:401–409

    PubMed  CAS  Google Scholar 

  25. Holm C, Osterlund T, Laurell H et al (2000) Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Annu Rev Nutr 20:365–393

    Article  PubMed  CAS  Google Scholar 

  26. Kraemer FB, Shen WJ (2002) Hormone-sensitive lipase: control of intracellular tri-(di-)acylglycerol and cholesteryl ester hydrolysis. J Lipid Res 43:1585–1594

    Article  PubMed  CAS  Google Scholar 

  27. Ben Ali Y, Chahinian H, Petry S et al (2004) Might the kinetic behavior of hormone-sensitive lipase reflect the absence of the lid domain? Biochemistry 43:9298–9306

    Article  PubMed  CAS  Google Scholar 

  28. Fredrikson G, Stralfors P, Nilsson NO et al (1981) Hormone-sensitive lipase of rat adipose tissue. Purification and some properties. J Biol Chem 256:6311–6320

    PubMed  CAS  Google Scholar 

  29. Ben Ali Y, Carriere F, Verger R et al (2005) Continuous monitoring of cholesterol oleate hydrolysis by hormone-sensitive lipase and other cholesterol esterases. J Lipid Res 46:994–1000

    Article  CAS  Google Scholar 

  30. Haemmerle G, Zimmermann R, Hayn M et al (2002) Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem 277:4806–4815

    Article  PubMed  CAS  Google Scholar 

  31. Osuga J, Ishibashi S, Oka T et al (2000) Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. Proc Natl Acad Sci USA 97:787–792

    Article  PubMed  CAS  Google Scholar 

  32. Erlanson C (1970) p-Nitrophenylacetate as a substrate for a carboxyl-ester hydrolase in pancreatic juice and intestinal content. Scand J Gastroenterol 5:333–336

    PubMed  CAS  Google Scholar 

  33. Erlanson C, Borgstrom B (1970) Carboxyl ester hydrolase and lipase of human pancreatic juice and intestinal content. Behaviour in gel filtration. Scand J Gastroenterol 5:395–400

    PubMed  CAS  Google Scholar 

  34. Bradshaw WS, Rutter WJ (1972) Multiple pancreatic lipases. Tissue distribution and pattern of accumulation during embryo-logical development. Biochemistry 11:1517–1528

    Article  PubMed  CAS  Google Scholar 

  35. van den Bosch H, Aarsman AJ, de Jong JG et al (1973) Studies on lysophospholipases. I. Purification and some properties of a lysophospholipase from beef pancreas. Biochim Biophys Acta 296:94–104

    PubMed  Google Scholar 

  36. Hernell O (1975) Human milk lipases. III. Physiological implications of the bile salt-stimulated lipase. Eur J Clin Invest 5:267–272

    Article  PubMed  CAS  Google Scholar 

  37. Gjellesvik DR, Lombardo D, Walther BT (1992) Pancreatic bile salt dependent lipase from cod (Gadus morhua): purification and properties. Biochim Biophys Acta 1124:123–134

    PubMed  CAS  Google Scholar 

  38. Wang CS (1981) Human milk bile salt-activated lipase. Further characterization and kinetic studies. J Biol Chem 256:10198–10202

    PubMed  CAS  Google Scholar 

  39. Junge W, Leybold K, Philipp B (1979) Identification of a non-specific carboxylesterase in human pancreas using vinyl 8-phenyloctanoate as a substrate. Clin Chim Acta 94:109–114

    Article  PubMed  CAS  Google Scholar 

  40. Rudd EA, Brockman HL (1984) Pancreatic carboxyl ester lipase (cholesterol esterase). In: Borgstrom B, Brockman HL (eds) Lipases. Elsevier, Amsterdam, pp 185–204

    Google Scholar 

  41. Giller T, Buchwald P, Blum-Kaelin D et al (1992) Two novel human pancreatic lipase related proteins, hPLRP1 and hPLRP2. Differences in colipase dependence and in lipase activity. J Biol Chem 267:16509–16516

    PubMed  CAS  Google Scholar 

  42. Andersson L, Carriere F, Lowe ME et al (1996) Pancreatic lipase-related protein 2 but not classical pancreatic lipase hydrolyzes galactolipids. Biochim Biophys Acta 1302:236–240

    PubMed  Google Scholar 

  43. Sias B, Ferrato F, Grandval P et al (2004) Human pancreatic lipase-related protein 2 is a galactolipase. Biochemistry 43:10138–10148

    Article  PubMed  CAS  Google Scholar 

  44. Thirstrup K, Verger R, Carriere F (1994) Evidence for a pancreatic lipase subfamily with new kinetic properties. Biochemistry 33:2748–2756

    Article  PubMed  CAS  Google Scholar 

  45. Lowe ME (2000) Properties and function of pancreatic lipase related protein 2. Biochimie 82:997–1004

    Article  PubMed  CAS  Google Scholar 

  46. Amara S, Barouh N, Lecomte J et al (2010) Lipolysis of natural long chain and synthetic medium chain galactolipids by pancreatic lipase-related protein 2. Biochim Biophys Acta 1801:508–516

    PubMed  CAS  Google Scholar 

  47. De Caro J, Carriere F, Barboni P et al (1998) Pancreatic lipase-related protein 1 (PLRP1) is present in the pancreatic juice of several species. Biochim Biophys Acta 1387:331–341

    Article  PubMed  Google Scholar 

  48. Payne RM, Sims HF, Jennens ML et al (1994) Rat pancreatic lipase and two related proteins: enzymatic properties and mRNA expression during development. Am J Physiol 266:G914–921

    PubMed  CAS  Google Scholar 

  49. Hemila H, Koivula TT, Palva I (1994) Hormone-sensitive lipase is closely related to several bacterial proteins, and distantly related to acetylcholinesterase and lipoprotein lipase: identification of a superfamily of esterases and lipases. Biochim Biophys Acta 1210:249–253

    PubMed  CAS  Google Scholar 

  50. Benson DA, Boguski MS, Lipman DJ et al (1997) GenBank. Nucleic Acids Res 25:1–6

    Article  PubMed  CAS  Google Scholar 

  51. Cousin X, Hotelier T, Giles K et al (1997) The alpha/beta fold family of proteins database and the cholinesterase gene server ESTHER. Nucleic Acids Res 25:143–146

    Article  PubMed  CAS  Google Scholar 

  52. Carr PD, Ollis DL (2009) Alpha/beta hydrolase fold: an update. Protein Pept Lett 16:1137–1148

    Article  PubMed  CAS  Google Scholar 

  53. Ollis DL, Cheah E, Cygler M et al (1992) The alpha/beta hydrolase fold. Protein Eng 5:197–211

    Article  PubMed  CAS  Google Scholar 

  54. Probst MR, Beer M, Beer D et al (1994) Human liver arylacetamide deacetylase. Molecular cloning of a novel esterase involved in the metabolic activation of arylamine carcinogens with high sequence similarity to hormone-sensitive lipase. J Biol Chem 269:21650–21656

    PubMed  CAS  Google Scholar 

  55. Wei Y, Contreras JA, Sheffield P et al (1999) Crystal structure of brefeldin A esterase, a bacterial homolog of the mammalian hormone-sensitive lipase. Nat Struct Biol 6:340–345

    Article  PubMed  CAS  Google Scholar 

  56. Wohlleben W, Arnold W, Broer I et al (1988) Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from streptomyces viridochromogenes Tu494 and its expression in Nicotiana tabacum. Gene 70:25–37

    Article  PubMed  CAS  Google Scholar 

  57. Feller G, Thiry M, Arpigny JL et al (1991) Cloning and expression in Escherichia coli of three lipase-encoding genes from the psychrotrophic antarctic strain Moraxella TA144. Gene 102:111–115

    Article  PubMed  CAS  Google Scholar 

  58. Canaan S, Maurin D, Chahinian H et al (2004) Expression and characterization of the protein Rv1399c from Mycobacterium tuberculosis. A novel carboxyl esterase structurally related to the HSL family. Eur J Biochem 271:3953–3961

    Article  PubMed  CAS  Google Scholar 

  59. Zhu X, Larsen NA, Basran A et al (2003) Observation of an arsenic adduct in an acetyl esterase crystal structure. J Biol Chem 278:2008–2014

    Article  PubMed  CAS  Google Scholar 

  60. Manco G, Adinolfi E, Pisani FM et al (1998) Overexpression and properties of a new thermophilic and thermostable esterase from Bacillus acidocaldarius with sequence similarity to hormone-sensitive lipase subfamily. Biochem J 332:203–212

    PubMed  CAS  Google Scholar 

  61. De Simone G, Menchise V, Manco G et al (2001) The crystal structure of a hyper-thermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus. J Mol Biol 314:507–518

    Article  PubMed  CAS  Google Scholar 

  62. De Simone G, Galdiero S, Manco G et al (2000) A snapshot of a transition state analogue of a novel thermophilic esterase belonging to the subfamily of mammalian hormone-sensitive lipase. J Mol Biol 303:761–771

    Article  PubMed  CAS  Google Scholar 

  63. Ben Ali Y, Chahinian H, Petry S et al (2006) Use of an inhibitor to identify members of the hormone-sensitive lipase family. Biochemistry 45:14183–14191

    Article  PubMed  CAS  Google Scholar 

  64. Chahinian H, Ali YB, Abousalham A et al (2005) Substrate specificity and kinetic properties of enzymes belonging to the hormone-sensitive lipase family: comparison with non-lipolytic and lipolytic carboxylesterases. Biochim Biophys Acta 1738:29–36

    PubMed  CAS  Google Scholar 

  65. Wei Y, Swenson L, Castro C et al (1998) Structure of a microbial homologue of mammalian platelet-activating factor acetylhydrolases: Streptomyces exfoliatus lipase at 1.9 A resolution. Structure 6:511–519

    Article  PubMed  CAS  Google Scholar 

  66. Misawa E, Chan Kwo Chion CK, Archer IV et al (1998) Characterisation of a catabolic epoxide hydrolase from a Corynebacterium sp. Eur J Biochem 253:173–183

    Article  PubMed  CAS  Google Scholar 

  67. Verschueren KH, Seljee F, Rozeboom HJ et al (1993) Crystallographic analysis of the catalytic mechanism of haloalkane dehalogenase. Nature 363:693–698

    Article  PubMed  CAS  Google Scholar 

  68. Galleni M, Lindberg F, Normark S et al (1988) Sequence and comparative analysis of three Enterobacter cloacae ampC beta-lactamase genes and their products. Biochem J 250:753–760

    PubMed  CAS  Google Scholar 

  69. Brick DJ, Brumlik MJ, Buckley JT et al (1995) A new family of lipolytic plant enzymes with members in rice, arabidopsis and maize. FEBS Lett 377:475–480

    Article  PubMed  CAS  Google Scholar 

  70. Upton C, Buckley JT (1995) A new family of lipolytic enzymes? Trends Biochem Sci 20:178–179

    Article  PubMed  CAS  Google Scholar 

  71. Holwerda K, Verkade PE, De Willigen AHA (1936) Vergleichende Untersuchungen über die Verseifungsgeschwindigkeit einiger einsäuriger Triglyceride unter Einfluss von Pankreasextrakt. Rec Trav Chim Pays-Bas 55:43–57

    Article  CAS  Google Scholar 

  72. Schønheyder F, Volqvartz K (1945) On the affinity of pig pancreas lipase for tricaproin in heterogenous solution. Acta Physiol Scand 9:57–67

    Article  Google Scholar 

  73. Desnuelle P, Sarda L, Ailhaud G (1960) Inhibition de la lipase pancréatique par le diéthyl-p-nitrophényl phosphate en émulsion. Biochim Biophys Acta 37:570–571

    Article  PubMed  CAS  Google Scholar 

  74. Winkler FK, D’Arcy A, Hunziker W (1990) Structure of human pancreatic lipase. Nature 343:771–774

    Article  PubMed  CAS  Google Scholar 

  75. Brady L, Brzozowski AM, Derewenda ZS et al (1990) A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature 343:767–770

    Article  PubMed  CAS  Google Scholar 

  76. Brzozowski AM, Derewenda U, Derewenda ZS et al (1991) A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 351:491–494

    Article  PubMed  CAS  Google Scholar 

  77. van Tilbeurgh H, Egloff M-P, Martinez C et al (1993) Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-Ray crystallography. Nature 362:814–820

    Article  PubMed  Google Scholar 

  78. Hjorth A, Carriere F, Cudrey C et al (1993) A structural domain (the lid) found in pancreatic lipases is absent in the guinea pig (phospho)lipase. Biochemistry 32:4702–4707

    Article  PubMed  CAS  Google Scholar 

  79. Noble ME, Cleasby A, Johnson LN et al (1993) The crystal structure of triacylglycerol lipase from Pseudomonas glumae reveals a partially redundant catalytic aspartate. FEBS Lett 331:123–128

    Article  PubMed  CAS  Google Scholar 

  80. Uppenberg J, Hansen MT, Patkar S et al (1994) Sequence, crystal srtucture determination and refinement of two cristal forms of lipase B from Candida antartica. Structure 2:293–308

    Article  PubMed  CAS  Google Scholar 

  81. Entressangles B, Desnuelle P (1968) Action of pancreatic lipase on aggregated glyceride molecules in an isotropic system. Biochim Biophys Acta 159:285–295

    PubMed  CAS  Google Scholar 

  82. de Araujo PS, Rosseneu MY, Kremer JM et al (1979) Structure and thermodynamic properties of the complexes between phospholipase A2 and lipid micelles. Biochemistry 18:580–586

    Article  PubMed  Google Scholar 

  83. Verger R, de Haas GH (1976) Interfacial enzyme kinetics of lipolysis. Ann Rev Biophys Bioeng 5:77–117

    Article  CAS  Google Scholar 

  84. Ferrato F, Carriere F, Sarda L et al (1997) A critical reevaluation of the phenomenon of interfacial activation. Methods Enzymol 286:327–347

    Article  PubMed  CAS  Google Scholar 

  85. Verger R (1997) ‘Interfacial activation’ of lipases: facts and artifacts. Trends Biotechnol 15:32–38

    Article  CAS  Google Scholar 

  86. Mandrich L, Pezzullo M, Del Vecchio P et al (2004) Analysis of thermal adaptation in the HSL enzyme family. J Mol Biol 335:357–369

    Article  PubMed  CAS  Google Scholar 

  87. Chahinian H, Fantini J, Garmy N et al (2010) Non-lipolytic and lipolytic sequence-related carboxylesterases: a comparative study of the structure–function relationships of rabbit liver esterase 1 and bovine pancreatic bile-salt-activated lipase. Biochim Biophys Acta 1801:1195–1204

    PubMed  CAS  Google Scholar 

  88. Chahinian H, Nini L, Boitard E et al (2000) Kinetic properties of Penicillium cyclopium lipases studied with vinyl esters. Lipids 35:919–925

    Article  PubMed  CAS  Google Scholar 

  89. Manco G, Giosue E, D’Auria S et al (2000) Cloning, overexpression, and properties of a new thermophilic and thermostable esterase with sequence similarity to hormone-sensitive lipase subfamily from the archaeon Archaeoglobus fulgidus. Arch Biochem Biophys 373:182–192

    Article  PubMed  CAS  Google Scholar 

  90. Borgström B (1988) Mode of action of tetrahydrolipstatin: a derivative of the naturally occuring lipase inhibitor lipstatin. Biochim Biophys Acta 962:308–316

    PubMed  Google Scholar 

  91. Gargouri Y, Chahinian H, Moreau H et al (1991) Inactivation of pancreatic and gastric lipases by THL and C12:0-TNB: a kinetic study with emulsified tributyrin. Biochim Biophys Acta 1085:322–328

    PubMed  CAS  Google Scholar 

  92. Hadvary P, Lengsfeld H, Wolfer H (1988) Inhibition of pancreatic lipase in vitro by the covalent inhibitor tetrahydrolipstatin. Biochem J 256:357–361

    PubMed  CAS  Google Scholar 

  93. Hochuli E, Kupfer E, Maurer R et al (1987) Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. II. Chemistry and structure elucidation. J Antibiot (Tokyo) 40:1086–1091

    Article  CAS  Google Scholar 

  94. Hogan S, Fleury A, Hadvary P et al (1987) Studies on the antiobesity activity of tetrahydrolipstatin, a potent and selective inhibitor of pancreatic lipase. Int J Obes 11(Suppl 3):35–42

    PubMed  CAS  Google Scholar 

  95. Ransac S, Gargouri Y, Moreau H et al (1991) Inactivation of pancreatic and gastric lipases by tetrahydrolipstatin and alkyl-dithio-5-(2-nitrobenzoic acid). A kinetic study with 1,2-didecanoyl-sn-glycerol monolayers. Eur J Biochem 202:395–400

    Article  PubMed  CAS  Google Scholar 

  96. Weibel EK, Hadvàry P, Hochuli E et al (1987) Lipstatin, an inhibitor of pancreatic lipase, produced by Streptomyces toxytricini. I. Producing organism, fermentation, isolation and biological activity. J Antibiot 40:1081–1085

    Article  PubMed  CAS  Google Scholar 

  97. Hadvàry P, Sidler W, Meister W et al (1991) The lipase inhibitor tetrahydrolipstatin binds covalently to the putative active site serine of pancreatic lipase. J Biol Chem 266:2021–2027

    PubMed  Google Scholar 

  98. Luthi-Peng Q, Marki HP, Hadvary P (1992) Identification of the active-site serine in human pancreatic lipase by chemical modification with tetrahydrolipstatin. FEBS Lett 299:111–115

    Article  PubMed  CAS  Google Scholar 

  99. Carriere F, Renou C, Ransac S et al (2001) Inhibition of gastrointestinal lipolysis by Orlistat during digestion of test meals in healthy volunteers. Am J Physiol Gastrointest Liver Physiol 281:G16–28

    PubMed  CAS  Google Scholar 

  100. Dhouib R, Laroche-Traineau J, Shaha R et al (2010) Identification of a putative triacylglycerol lipase from papaya latex by functional proteomics. FEBS J 278:97–110

    Article  PubMed  CAS  Google Scholar 

  101. El-Kouhen K, Blangy S, Ortiz E et al (2005) Identification and characterization of a triacylglycerol lipase in Arabidopsis homologous to mammalian acid lipases. FEBS Lett 579:6067–6073

    Article  PubMed  CAS  Google Scholar 

  102. Rivera-Perez C, del Toro ML, Garcia-Carreno F (2011) Purification and characterization of an intracellular lipase from pleopods of whiteleg shrimp (Litopenaeus vannamei). Comp Biochem Physiol B Biochem Mol Biol 158:99–105

    Article  PubMed  CAS  Google Scholar 

  103. Tiss A, Lengsfeld H, Carrière F et al (2009) Inhibition of human pancreatic lipase by tetrahydrolipstatin: further kinetic studies showing its reversibility. J Mol Catal B Enzym 58:41–47

    Article  CAS  Google Scholar 

  104. Knowles LM, Axelrod F, Browne CD et al (2004) A fatty acid synthase blockade induces tumor cell-cycle arrest by down-regulating Skp2. J Biol Chem 279:30540–30545

    Article  PubMed  CAS  Google Scholar 

  105. Kridel SJ, Axelrod F, Rozenkrantz N et al (2004) Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res 64:2070–2075

    Article  PubMed  CAS  Google Scholar 

  106. Zhi J, Melia AT, Eggers H et al (1995) Review of limited systemic absorption of orlistat, a lipase inhibitor, in healthy human volunteers. J Clin Pharmacol 35:1103–1108

    PubMed  CAS  Google Scholar 

  107. Lookene A, Skottova N, Olivecrona G (1994) Interactions of lipoprotein lipase with the active-site inhibitor tetrahydrolipstatin (Orlistat). Eur J Biochem 222:395–403

    Article  PubMed  CAS  Google Scholar 

  108. Smith GM, Garton AJ, Aitken A et al (1996) Evidence for a multi-domain structure for hormone-sensitive lipase. FEBS Lett 396:90–94

    Article  PubMed  CAS  Google Scholar 

  109. Zimmermann R, Strauss JG, Haemmerle G et al (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386

    Article  PubMed  CAS  Google Scholar 

  110. Lehner R, Vance DE (1999) Cloning and expression of a cDNA encoding a hepatic microsomal lipase that mobilizes stored ­triacylglycerol. Biochem J 343(Pt 1):1–10

    Article  PubMed  CAS  Google Scholar 

  111. Lehner R, Verger R (1997) Purification and characterization of a porcine liver microsomal triacylglycerol hydrolase. Biochemistry 36:1861–1868

    Article  PubMed  CAS  Google Scholar 

  112. Birner-Gruenberger R, Susani-Etzerodt H, Waldhuber M et al (2005) The lipolytic proteome of mouse adipose tissue. Mol Cell Proteomics 4:1710–1717

    Article  PubMed  CAS  Google Scholar 

  113. Dolinsky VW, Sipione S, Lehner R et al (2001) The cloning and expression of a murine triacylglycerol hydrolase cDNA and the structure of its corresponding gene. Biochim Biophys Acta 1532:162–172

    PubMed  CAS  Google Scholar 

  114. Wei E, Ben Ali Y, Lyon J et al (2010) Loss of TGH/Ces3 in mice decreases blood lipids, improves glucose tolerance, and increases energy expenditure. Cell Metab 11:183–193

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert Verger or Abdelkarim Abousalham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ali, Y.B., Verger, R., Abousalham, A. (2012). Lipases or Esterases: Does It Really Matter? Toward a New Bio-Physico-Chemical Classification. In: Sandoval, G. (eds) Lipases and Phospholipases. Methods in Molecular Biology, vol 861. Humana Press. https://doi.org/10.1007/978-1-61779-600-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-600-5_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-599-2

  • Online ISBN: 978-1-61779-600-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics