Skip to main content

Assessment of Thigmotaxis in Larval Zebrafish

  • Protocol
  • First Online:
Zebrafish Protocols for Neurobehavioral Research

Part of the book series: Neuromethods ((NM,volume 66))

Abstract

One of the most commonly used behavioral endpoints measured in preclinical studies employing rodent models is thigmotaxis (or “wall-hugging”). Thigmotaxis is the propensity to avoid the center of an arena and stay or move in close proximity to the boundaries of the environment. Thigmotaxis is a validated index of anxiety. While assays measuring thigmotaxis in adult zebrafish have been developed, such assays have not yet been validated in larval zebrafish. Here we present a simple protocol for the measurement of thigmotaxis in zebrafish larvae that is triggered by a sudden change in illumination and performed in a standard 24-well plate. We show that larval zebrafish as young as 5 dpf respond to this challenge by engaging in thigmotaxis. This behavior is sensitive to commonly used anxiolytic (diazepam) and anxiogenic (caffeine) drugs, thus representing the first validated thigmotaxis assay for larval zebrafish. In sum, this protocol is cost-effective, rapid (only 10 min), and amenable to medium- to high-throughput capacity while constituting a valuable tool for stress and central nervous system research as well as for preclinical drug screening and discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rihel J, Prober DA, Arvanites A, Lam K, Zimmerman S, Jang S, Haggarty SJ, Kokel D, Rubin LL, Peterson RT, Schier AF (2010) Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327:348–351

    Article  PubMed  CAS  Google Scholar 

  2. Muto A, Orger MB, Wehman AM, Smear MC, Kay JN, Page-McCaw PS, Gahtan E, Xiao T, Nevin LM, Gosse NJ, Staub W, Finger-Baier K, Baier H (2005) Forward genetic analysis of visual behavior in zebrafish. PLoS Genet 1:e66

    Article  PubMed  Google Scholar 

  3. Kokel D, Peterson RT (2008) Chemobehavioural phenomics and behaviour-based psychiatric drug discovery in the zebrafish. Brief Funct Genomic Proteomic 7:483–490

    Article  PubMed  CAS  Google Scholar 

  4. Kokel D, Bryan J, Laggner C, White R, Cheung CY, Mateus R, Healey D, Kim S, Werdich AA, Haggarty SJ, Macrae CA, Shoichet B, Peterson RT (2010) Rapid behavior-based identification of neuroactive small molecules in the zebrafish. Nat Chem Biol 6(3):231–237

    Article  PubMed  CAS  Google Scholar 

  5. Gutman DA, Nemeroff CB (2003) Persistent central nervous system effects of an adverse early environment: clinical and preclinical studies. Physiol Behav 79:471–478

    Article  PubMed  CAS  Google Scholar 

  6. Gerlai R (2010) High-throughput behavioral screens: the first step towards finding genes involved in vertebrate brain function using zebrafish. Molecules 15:2609–2622

    Article  PubMed  CAS  Google Scholar 

  7. Burgess HA, Granato M (2007) Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol 210:2526–2539

    Article  PubMed  Google Scholar 

  8. Berghmans S, Hunt J, Roach A, Goldsmith P (2007) Zebrafish offer the potential for a primary screen to identify a wide variety of potential anticonvulsants. Epilepsy Res 75:18–28

    Article  PubMed  CAS  Google Scholar 

  9. Sharma S, Coombs S, Patton P, Burt de Perera T (2009) The function of wall-following behaviors in the Mexican blind cavefish and a sighted relative, the Mexican tetra (Astyanax). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195:225–240

    Article  PubMed  Google Scholar 

  10. Treit D, Fundytus M (1988) Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol Biochem Behav 31:959–962

    Article  PubMed  CAS  Google Scholar 

  11. Belzung C, Philippot P (2007) Anxiety from a phylogenetic perspective: is there a qualitative difference between human and animal anxiety? Neural Plast 2007:59676

    Article  PubMed  Google Scholar 

  12. Prut L, Belzung C (2003) The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharmacol 463:3–33

    Article  PubMed  CAS  Google Scholar 

  13. Sousa N, Almeida OF, Wotjak CT (2006) A hitchhiker’s guide to behavioral analysis in laboratory rodents. Genes Brain Behav 5(suppl 2):5–24

    PubMed  Google Scholar 

  14. Champagne DL, Hoefnagels CC, de Kloet RE, Richardson MK (2010) Translating rodent behavioral repertoire to zebrafish (Danio rerio): relevance for stress research. Behav Brain Res 214:332–342

    Article  PubMed  Google Scholar 

  15. Colwill RM, Creton R (2011) Locomotor behaviors in zebrafish (Danio rerio) larvae. Behav Processes 86:222–229

    Article  PubMed  Google Scholar 

  16. Lopez-Patino MA, Yu L, Cabral H, Zhdanova IV (2008) Anxiogenic effects of cocaine withdrawal in zebrafish. Physiol Behav 93:160–171

    Article  PubMed  CAS  Google Scholar 

  17. Peitsaro N, Kaslin J, Anichtchik OV, Panula P (2003) Modulation of the histaminergic system and behaviour by alpha-fluoromethylhistidine in zebrafish. J Neurochem 86:432–441

    Article  PubMed  CAS  Google Scholar 

  18. Kallai J, Makany T, Csatho A, Karadi K, Horvath D, Kovacs-Labadi B, Jarai R, Nadel L, Jacobs JW (2007) Cognitive and affective aspects of thigmotaxis strategy in humans. Behav Neurosci 121:21–30

    Article  PubMed  Google Scholar 

  19. Kallai J, Makany T, Karadi K, Jacobs WJ (2005) Spatial orientation strategies in Morris-type virtual water task for humans. Behav Brain Res 159:187–196

    Article  PubMed  Google Scholar 

  20. Buske C, Gerlai R (2012) Maturation of shoaling behavior is accompanied by changes in the dopaminergic and serotoninergic systems in zebrafish. Dev Psychobiol 54(1):28–35

    Article  PubMed  CAS  Google Scholar 

  21. Grossman L, Utterback E, Stewart A, Gaikwad S, Chung KM, Suciu C, Wong K, Elegante M, Elkhayat S, Tan J, Gilder T, Wu N, Dileo J, Cachat J, Kalueff AV (2010) Characterization of behavioral and endocrine effects of LSD on zebrafish. Behav Brain Res 214:277–284

    Article  PubMed  CAS  Google Scholar 

  22. Stewart A, Maximino C, Marques de Brito T, Herculano AM, Gouveia A, Morato S, Cachat JM, Gaikwad S, Elegante MF, Hart PC, Kalueff A (2010) Neurophenotyping of adult zebrafish using the light/dark box paradigm. In: Kalueff AV, Cachat J (eds) Zebrafish neurobehavioral protocols. Springer Science, New York

    Google Scholar 

  23. Blaser RE, Chadwick L, McGinnis GC (2010) Behavioral measures of anxiety in zebrafish (Danio rerio). Behav Brain Res 208:56–62

    Article  PubMed  CAS  Google Scholar 

  24. Patton P, Windsor S, Coombs S (2010) Active wall following by Mexican blind cavefish (Astyanax mexicanus). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 196:853–867

    Article  PubMed  Google Scholar 

  25. Millot S, Begout ML, Chatain B (2009) Exploration behaviour and flight response toward a stimulus in three sea bass strains (Dicentrarchus labrax L.). Appl Anim Behav Sci 119:108–114

    Article  Google Scholar 

  26. Emran F, Rihel J, Dowling JE (2008) A behavioral assay to measure responsiveness of zebrafish to changes in light intensities. J Vis Exp pii:923

    Google Scholar 

  27. MacPhail RC, Brooks J, Hunter DL, Padnos B, Irons TD, Padilla S (2009) Locomotion in larval zebrafish: influence of time of day, lighting and ethanol. Neurotoxicology 30:52–58

    Article  PubMed  CAS  Google Scholar 

  28. Bouwknecht JA, Paylor R (2008) Pitfalls in the interpretation of genetic and pharmacological effects on anxiety-like behaviour in rodents. Behav Pharmacol 19:385–402

    Article  PubMed  Google Scholar 

  29. Nusslein-Volhard C, Dahm R (2005) Zebrafish: practical approach, vol 261. Oxford University Press, Tubingen

    Google Scholar 

  30. Steenbergen PJ, Richardson MK, Champagne D (2011) Patterns of avoidance behaviours in the light/dark preference test in young juvenile zebrafish: a pharmacological study. Behav Brain Res 222(1):15–25

    Article  PubMed  Google Scholar 

  31. Best JD, Berghmans S, Hunt JJ, Clarke SC, Fleming A, Goldsmith P, Roach AG (2008) Non-associative learning in larval zebrafish. Neuropsychopharmacology 33:1206–1215

    Article  PubMed  CAS  Google Scholar 

  32. Gomez-Laplaza LM, Gerlai R (2010) Latent learning in zebrafish (Danio rerio). Behav Brain Res 208(2):509–515

    Article  PubMed  Google Scholar 

  33. Simon P, Dupuis R, Costentin J (1994) Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions. Behav Brain Res 61:59–64

    Article  PubMed  CAS  Google Scholar 

  34. Colwill RM, Creton R (2011) Imaging escape and avoidance behavior in zebrafish larvae. Rev Neurosci 22:63–73

    PubMed  Google Scholar 

  35. Pelkowski SD, Kapoor M, Richendrfer HA, Wang X, Colwill RM, Creton R (2011) A novel high-throughput imaging system for automated analyses of avoidance behavior in zebrafish larvae. Behav Brain Res 223:135–144

    Article  PubMed  Google Scholar 

  36. Dadda M, Domenichini A, Piffer L, Argenton F, Bisazza A (2010) Early differences in epithalamic left-right asymmetry influence lateralization and personality of adult zebrafish. Behav Brain Res 206:208–215

    Article  PubMed  Google Scholar 

  37. Dadda M, Koolhaas WH, Domenici P (2010) Behavioural asymmetry affects escape performance in a teleost fish. Biol Lett 6:414–417

    Article  PubMed  Google Scholar 

  38. Belzung C, Griebel G (2001) Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res 125:141–149

    Article  PubMed  CAS  Google Scholar 

  39. Creed RP, Miller JR (1990) Interpreting animal wall-following behaviour. Experientia 46:758–761

    Article  Google Scholar 

  40. Henry BL, Minassian A, Young JW, Paulus MP, Geyer MA, Perry W (2010) Cross-species assessments of motor and exploratory behavior related to bipolar disorder. Neurosci Biobehav Rev 34:1296–1306

    Article  PubMed  Google Scholar 

  41. Perry W, Minassian A, Paulus MP, Young JW, Kincaid MJ, Ferguson EJ, Henry BL, Zhuang X, Masten VL, Sharp RF, Geyer MA (2009) A reverse-translational study of dysfunctional exploration in psychiatric disorders: from mice to men. Arch Gen Psychiatry 66:1072–1080

    Article  PubMed  Google Scholar 

  42. Kallai J, Karadi K, Bereczkei T, Rozsa S, Jacobs WJ, Nadel L (2007) Spatial exploration behaviour in an extended labyrinth in patients with panic disorder and agoraphobia. Psychiatry Res 149:223–230

    Article  PubMed  Google Scholar 

  43. Winter MJ, Redfern WS, Hayfield AJ, Owen SF, Valentin JP, Hutchinson TH (2008) Validation of a larval zebrafish locomotor assay for assessing the seizure liability of early-stage development drugs. J Pharmacol Toxicol Methods 57:176–187

    Article  PubMed  CAS  Google Scholar 

  44. Richards FM, Alderton WK, Kimber GM, Liu Z, Strang I, Redfern WS, Valentin JP, Winter MJ, Hutchinson TH (2008) Validation of the use of zebrafish larvae in visual safety assessment. J Pharmacol Toxicol Methods 58:50–58

    Article  PubMed  CAS  Google Scholar 

  45. Irons TD, Macphail RC, Hunter DL, Padilla S (2010) Acute neuroactive drug exposures alter locomotor activity in larval zebrafish. Neurotoxicol Teratol 32:84–90

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the SmartMix Program of The Netherlands Ministry of Economic Affairs and The Netherlands Ministry of Education, Culture and Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle L. Champagne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schnörr, S.J., Steenbergen, P.J., Richardson, M.K., Champagne, D.L. (2012). Assessment of Thigmotaxis in Larval Zebrafish. In: Kalueff, A., Stewart, A. (eds) Zebrafish Protocols for Neurobehavioral Research. Neuromethods, vol 66. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-597-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-597-8_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-596-1

  • Online ISBN: 978-1-61779-597-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics