Skip to main content

Assessing Startle Responses and Their Habituation in Adult Zebrafish

  • Protocol
  • First Online:
Zebrafish Protocols for Neurobehavioral Research

Abstract

Zebrafish is rapidly becoming a popular model species for neurobehavioral and psychopharmacological research. The startle response represents the instinctive, evolutionarily conserved reaction of an organism to novel unexpected and/or aversive stimuli. While startle testing is a well-established assay to study anxiety-like behaviors in different species, screening of the startle response and its habituation in zebrafish is also an important direction of translational biomedical research. Complementing rich literature on zebrafish startle, this chapter outlines a brief and simple protocol to assess the tapping-induced startle response and its inter- and intra-trial habituation in adult zebrafish.

Simon Chanin, Caroline Fryar, and Danielle Varga contributed equally to this manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schachinger H (2003) The startle reaction in emotion research. Praxis (Bern 1994) 92(38):1584–1586

    Article  CAS  Google Scholar 

  2. Westerfield M (2007) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 5th edn. University of Oregon Press, Eugene, OR

    Google Scholar 

  3. Hale ME (2000) Startle responses of fish without Mauthner neurons: escape behavior of the lumpfish (Cyclopterus lumpus). Biol Bull 199(2):180–182

    Article  PubMed  CAS  Google Scholar 

  4. Plappert CF, Pilz PK (2001) The acoustic startle response as an effective model for elucidating the effect of genes on the neural mechanism of behavior in mice. Behav Brain Res 125(1–2):183–188

    Article  PubMed  CAS  Google Scholar 

  5. Laming PR (1987) Behavioural arousal and its habituation in the squirrel fish, Holocentrus rufus: the role of the telecephalon. Behav Neural Biol 47(1):80–104

    Article  PubMed  CAS  Google Scholar 

  6. Marino-Neto J, Sabbatini RM (1983) Discrete telencephalic lesions accelerate the habituation rate of behavioral arousal responses in Siamese fighting fish (Betta splendens). Braz J Med Biol Res 16(3):271–278

    PubMed  CAS  Google Scholar 

  7. Maschke M et al (2000) Involvement of the human medial cerebellum in long-term habituation of the acoustic startle response. Exp Brain Res 133(3):359–367

    Article  PubMed  CAS  Google Scholar 

  8. Nieuwenhuijzen PH et al (2000) Modulation of the startle response during human gait. J Neurophysiol 84(1):65–74

    PubMed  CAS  Google Scholar 

  9. Hammer TB et al (2011) Stability of prepulse inhibition and habituation of the startle reflex in schizophrenia: a 6-year follow-up study of initially antipsychotic-naive, first-episode schizophrenia patients. Int J Neuropsychopharmacol 14(7):913–925

    Article  PubMed  Google Scholar 

  10. Quednow BB et al (2006) Normal prepulse inhibition and habituation of acoustic startle response in suicidal depressive patients without psychotic symptoms. J Affect Disord 92(2–3):299–303

    Article  PubMed  Google Scholar 

  11. Gotz T, Janik VM (2011) Repeated elicitation of the acoustic startle reflex leads to sensitisation in subsequent avoidance behaviour and induces fear conditioning. BMC Neurosci 12:30

    Article  PubMed  Google Scholar 

  12. Joordens RJ, Hijzen TH, Olivier B (1998) The anxiolytic effect on the fear-potentiated startle is not due to a non-specific disruption. Life Sci 63(25):2227–2232

    Article  PubMed  CAS  Google Scholar 

  13. Hasenkamp W et al (2011) Lack of relationship between acoustic startle and cognitive variables in schizophrenia and control subjects. Psychiatry Res 187(3):324–328

    Article  PubMed  Google Scholar 

  14. Kumari V et al (2007) Startle gating in antipsychotic-naive first episode schizophrenia patients: one ear is better than two. Psychiatry Res 151(1–2):21–28

    Article  PubMed  Google Scholar 

  15. Frau R et al (2008) Sleep deprivation disrupts prepulse inhibition of the startle reflex: reversal by antipsychotic drugs. Int J Neuropsychopharmacol 11(7):947–955

    Article  PubMed  CAS  Google Scholar 

  16. Ouagazzal AM, Jenck F, Moreau JL (2001) Drug-induced potentiation of prepulse inhibition of acoustic startle reflex in mice: a model for detecting antipsychotic activity? Psychopharmacology (Berl) 156(2–3):273–283

    Article  CAS  Google Scholar 

  17. Eddins D et al (2010) Zebrafish provide a sensitive model of persisting neurobehavioral effects of developmental chlorpyrifos exposure: comparison with nicotine and pilocarpine effects and relationship to dopamine deficits. Neurotoxicol Teratol 32(1):99–108

    Article  PubMed  CAS  Google Scholar 

  18. Burgess HA, Johnson SL, Granato M (2009) Unidirectional startle responses and disrupted left-right co-ordination of motor behaviors in robo3 mutant zebrafish. Genes Brain Behav 8(5):500–511

    Article  PubMed  CAS  Google Scholar 

  19. Carvan MJ 3rd et al (2004) Ethanol effects on the developing zebrafish: neurobehavior and skeletal morphogenesis. Neurotoxicol Teratol 26(6):757–768

    Article  PubMed  CAS  Google Scholar 

  20. Mann KD et al (2010) Cardiac response to startle stimuli in larval zebrafish: sympathetic and parasympathetic components. Am J Physiol Regul Integr Comp Physiol 298(5):R1288–R1297

    Article  PubMed  CAS  Google Scholar 

  21. Colwill RM, Creton R (2011) Imaging escape and avoidance behavior in zebrafish larvae. Rev Neurosci 22(1):63–73

    PubMed  Google Scholar 

  22. Orger MB et al (2004) Behavioral screening assays in zebrafish. Methods Cell Biol 77:53–68

    Article  PubMed  Google Scholar 

  23. Meliska JA, Meliska CJ (1976) Effects of habituation on threat display and dominance establishment in the Siamese fighting fish, Betta splendens. Anim Learn Behav 4(2):167–171

    Article  PubMed  CAS  Google Scholar 

  24. Wong K et al (2010) Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behav Brain Res 208(2):450–457

    Article  PubMed  CAS  Google Scholar 

  25. Burgess HA, Granato M (2007) Sensorimotor gating in larval zebrafish. J Neurosci 27(18):4984–4994

    Article  PubMed  CAS  Google Scholar 

  26. Eaton RC, Bombardieri RA, Meyer DL (1977) The Mauthner-initiated startle response in teleost fish. J Exp Biol 66(1):65–81

    PubMed  CAS  Google Scholar 

  27. Pelkowski SD et al (2011) A novel high-throughput imaging system for automated analyses of avoidance behavior in zebrafish larvae. Behav Brain Res 223(1):135–144

    Article  PubMed  Google Scholar 

  28. Griffith BB (2011) A larval zebrafish model of glucocorticoid-serotonin interactions in behavioral stress reactivity (Master’s Thesis), Humboldt State University: Arcata, CA, p 70

    Google Scholar 

  29. Delcourt J et al (2006) Comparing the EthoVision 2.3 system and a new computerized multitracking prototype system to measure the swimming behavior in fry fish. Behav Res Methods 38(4):704–710

    Article  PubMed  Google Scholar 

  30. Pham J et al (2009) Automated scoring of fear-related behavior using EthoVision software. J Neurosci Methods 178(2):323–326

    Article  PubMed  Google Scholar 

  31. Noldus LP, Spink AJ, Tegelenbosch RA (2001) EthoVision: a versatile video tracking system for automation of behavioral experiments. Behav Res Methods Instrum Comput 33(3):398–414

    Article  PubMed  CAS  Google Scholar 

  32. Marechal JP et al (2004) Settlement behaviour of marine invertebrate larvae measured by EthoVision 3.0. Biofouling 20(4–5):211–217

    Article  PubMed  Google Scholar 

  33. Cachat J et al (2011) Three-dimensional neurophenotyping of adult zebrafish behavior. PLoS One 6(3):e17597

    Article  PubMed  CAS  Google Scholar 

  34. Cachat J et al (2010) Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat Protoc 5(11):1786–1799

    Article  PubMed  CAS  Google Scholar 

  35. Dlugos CA, Rabin RA (2003) Ethanol effects on three strains of zebrafish: model system for genetic investigations. Pharmacol Biochem Behav 74(2):471–480

    Article  PubMed  CAS  Google Scholar 

  36. Zeddies DG, Fay RR (2005) Development of the acoustically evoked behavioral response in zebrafish to pure tones. J Exp Biol 208(Pt 7):1363–1372

    Article  PubMed  Google Scholar 

  37. Zurn J, Falls WA, Motai Y (2006) Detecting startle responses in the zebrafish using novel digital imaging techniques. Neuroscience Meeting Planner. Society for Neuroscience, SanDiego, CA

    Google Scholar 

  38. Grieco F et al (2009) Noldus Ethovision XT7 reference manual. Noldus Information Technology, Wageningen, The Netherlands

    Google Scholar 

Download references

Acknowledgements

The study was supported by Tulane University Intramural funds, Tulane Neurophenotyping Platform (TNP), Zebrafish Neuroscience Research Consortium (ZNRC), Tulane University Pilot, and the Newcomb Fellows grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan V. Kalueff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Chanin, S. et al. (2012). Assessing Startle Responses and Their Habituation in Adult Zebrafish. In: Kalueff, A., Stewart, A. (eds) Zebrafish Protocols for Neurobehavioral Research. Neuromethods, vol 66. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-597-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-597-8_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-596-1

  • Online ISBN: 978-1-61779-597-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics