Skip to main content

Assessing Habituation Phenotypes in Adult Zebrafish: Intra- and Inter-Trial Habituation in the Novel Tank Test

  • Protocol
  • First Online:
Zebrafish Protocols for Neurobehavioral Research

Abstract

Although adult zebrafish are increasingly utilized as a model organism in neurobehavioral research, their habituation responses have only recently been evaluated in detail. When exposed to a novel environment, zebrafish demonstrate marked habituation responses, similar to the behavioral response of rodents. Representing an adaptive response to novelty and a simple form of spatial memory, both intra- and inter-session habituation can be easily assessed in adult zebrafish using novelty-based paradigms, such as the novel tank test. Alterations in zebrafish habituation can also be evoked by pharmacological manipulations, collectively representing a useful tool for drug screening and behavioral phenotyping. Here, we outline a simple protocol for evaluating zebrafish intra- and inter-session habituation to novelty in the novel tank test.

Jolia Raymond and Simon Chanin contributed equally to this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salomons AR et al (2010) Behavioural habituation to novelty and brain area specific immediate early gene expression in female mice of two inbred strains. Behav Brain Res 215(1):95–101

    Article  PubMed  Google Scholar 

  2. Salomons AR et al (2010) Identifying emotional adaptation: behavioural habituation to novelty and immediate early gene expression in two inbred mouse strains. Genes Brain Behav 9(1):1–10

    Article  PubMed  CAS  Google Scholar 

  3. Wong K et al (2010) Analyzing habituation responses to novelty in zebrafish (Danio rerio). Behav Brain Res 208(2):450–457

    Article  PubMed  CAS  Google Scholar 

  4. File SE, Mabbutt PS (1990) Long-lasting effects on habituation and passive avoidance performance of a period of chronic ethanol administration in the rat. Behav Brain Res 36(1–2):171–178

    Article  PubMed  CAS  Google Scholar 

  5. Thompson RF, Spencer WA (1966) Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol Rev 73(1):16–43

    Article  PubMed  CAS  Google Scholar 

  6. Zucker RS (1972) Crayfish escape behavior and central synapses. II. Physiological mechanisms underlying behavioral habituation. J Neurophysiol 35(5):621–637

    PubMed  CAS  Google Scholar 

  7. Davis M (1970) Effects of interstimulus interval length and variability on startle-response habituation in the rat. J Comp Physiol Psychol 72(2):177–192

    Article  PubMed  CAS  Google Scholar 

  8. Davis M, Wagner AR (1969) Habituation of startle response under incremental sequence of stimulus intensities. J Comp Physiol Psychol 67(4):486–492

    Article  PubMed  CAS  Google Scholar 

  9. Leussis MP, Bolivar VJ (2006) Habituation in rodents: a review of behavior, neurobiology, and genetics. Neurosci Biobehav Rev 30(7):1045–1064

    Article  PubMed  Google Scholar 

  10. Crusio WE, Schwegler H (1987) Hippocampal mossy fiber distribution covaries with open-field habituation in the mouse. Behav Brain Res 26(2–3):153–158

    Article  PubMed  CAS  Google Scholar 

  11. Glowa JR, Hansen CT (1994) Differences in response to an acoustic startle stimulus among forty-six rat strains. Behav Genet 24(1): 79–84

    Article  PubMed  CAS  Google Scholar 

  12. Bolivar VJ (2009) Intrasession and intersession habituation in mice: from inbred strain variability to linkage analysis. Neurobiol Learn Mem 92(2):206–214

    Article  PubMed  Google Scholar 

  13. Glickman SE, Hartz KE (1964) Exploratory behavior in several species of rodents. J Comp Physiol Psychol 58:101–104

    Article  PubMed  CAS  Google Scholar 

  14. Bolivar VJ et al (2000) Habituation of activity in an open field: a survey of inbred strains and F1 hybrids. Behav Genet 30(4):285–293

    Article  PubMed  CAS  Google Scholar 

  15. Bolivar VJ, Manley K, Messer A (2004) Early exploratory behavior abnormalities in R6/1 Huntington’s disease transgenic mice. Brain Res 1005(1–2):29–35

    Article  PubMed  CAS  Google Scholar 

  16. Gunn RK, Keenan ME, Brown RE (2011) Analysis of sensory, motor and cognitive functions of the coloboma (C3Sn.Cg-Cm/J) mutant mouse. Genes Brain Behav 10(5): 579–588

    Article  PubMed  CAS  Google Scholar 

  17. Cachat J et al (2010) Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat Protoc 5(11): 1786–1799

    Article  PubMed  CAS  Google Scholar 

  18. Spence R et al (2008) The behaviour and ecology of the zebrafish, Danio rerio. Biol Rev Camb Philos Soc 83(1):13–34

    PubMed  Google Scholar 

  19. Gerlai R, Lee V, Blaser R (2006) Effects of acute and chronic ethanol exposure on the behavior of adult zebrafish (Danio rerio). Pharmacol Biochem Behav 85(4):752–761

    Article  PubMed  CAS  Google Scholar 

  20. Blaser R, Gerlai R (2006) Behavioral phenotyping in zebrafish: comparison of three behavioral quantification methods. Behav Res Methods 38(3):456–469

    Article  PubMed  Google Scholar 

  21. Bencan Z, Sledge D, Levin ED (2009) Buspirone, chlordiazepoxide and diazepam effects in a zebrafish model of anxiety. Pharmacol Biochem Behav 94(1):75–80

    Article  PubMed  CAS  Google Scholar 

  22. Stewart A et al (2010) Homebase behavior of zebrafish in novelty-based paradigms. Behav Processes 85(2):198–203

    Article  PubMed  Google Scholar 

  23. Rosemberg DB et al (2011) Differences in spatio-temporal behavior of zebrafish in the open tank paradigm after a short-period confinement into dark and bright environments. PLoS One 6(5):e19397

    Article  PubMed  CAS  Google Scholar 

  24. Best JD et al (2008) Non-associative learning in larval zebrafish. Neuropsychopharmacology 33(5):1206–1215

    Article  PubMed  CAS  Google Scholar 

  25. Levin ED, Bencan Z, Cerutti DT (2007) Anxiolytic effects of nicotine in zebrafish. Physiol Behav 90(1):54–58

    Article  PubMed  CAS  Google Scholar 

  26. Egan RJ et al (2009) Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 205(1):38–44

    Article  PubMed  CAS  Google Scholar 

  27. Grossman L et al (2011) Effects of piracetam on behavior and memory in adult zebrafish. Brain Res Bull 85(1–2):58–63

    Article  PubMed  CAS  Google Scholar 

  28. Cachat J et al (2010) Deconstructing adult zebrafish behavior with swim trace visualizations. In: Kalueff AV, Cachat J (eds) Zebrafish neurobehavioral protocols. Humana Press, New York, pp 191–201

    Google Scholar 

  29. Cachat J et al (2011) Three-dimensional neurophenotyping of adult zebrafish behavior. PLoS One 6(3):e17597

    Article  PubMed  CAS  Google Scholar 

  30. Rescorla RA (1988) Behavioral studies of pavlovian conditioning. Annu Rev Neurosci 11:329–352

    Article  PubMed  CAS  Google Scholar 

  31. Shao J et al (2011) Tissue regeneration after injury in adult zebrafish: the regenerative potential of the caudal fin. Dev Dyn 240(5): 1271–1277

    Article  PubMed  CAS  Google Scholar 

  32. Hughes RN (1982) A review of atropinic drug effects on exploratory choice behavior in laboratory rodents. Behav Neural Biol 34(1): 5–41

    Article  PubMed  CAS  Google Scholar 

  33. Klamer D et al (2004) Habituation of acoustic startle is disrupted by psychotomimetic drugs: differential dependence on dopaminergic and nitric oxide modulatory mechanisms. Psychopharmacology (Berl) 176(3–4): 440–450

    Article  CAS  Google Scholar 

  34. Alleva E, Bignami G (1985) Development of mouse activity, stimulus reactivity, habituation, and response to amphetamine and scopolamine. Physiol Behav 34(4): 519–523

    Article  PubMed  CAS  Google Scholar 

  35. Morris JA (2009) Zebrafish: a model system to examine the neurodevelopmental basis of schizophrenia. Prog Brain Res 179:97–106

    Article  PubMed  CAS  Google Scholar 

  36. Monson CA, Sadler KC (2010) Inbreeding depression and outbreeding depression are evident in wild-type zebrafish lines. Zebrafish 7(2):189–197

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by Tulane University Intramural funds, Tulane Neurophenotyping Platform, Tulane University Pilot, and the Newcomb Fellows grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan V. Kalueff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Raymond, J. et al. (2012). Assessing Habituation Phenotypes in Adult Zebrafish: Intra- and Inter-Trial Habituation in the Novel Tank Test. In: Kalueff, A., Stewart, A. (eds) Zebrafish Protocols for Neurobehavioral Research. Neuromethods, vol 66. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-597-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-597-8_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-596-1

  • Online ISBN: 978-1-61779-597-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics