Skip to main content

A High-Throughput and Inexpensive Assay for Anxiety-Related Behaviors in the Zebrafish, Based on Place Preference and Latency to Feed

  • Protocol
  • First Online:
Zebrafish Protocols for Neurobehavioral Research

Part of the book series: Neuromethods ((NM,volume 66))

Abstract

In this protocol, we describe a high-throughput and inexpensive assay for anxiety-related behaviors in zebrafish. The behavioral observations occur while fish are housed individually in 1-L tanks commonly found in commercial zebrafish rearing systems. Behavioral indices include orientation to the observer and to the surface of the water, as well as latency to begin feeding. We demonstrate that the procedure produces highly repeatable data with sufficient statistical power to detect relatively subtle differences in behavior. This protocol is suitable for labs engaged in genetic analysis of quantitative trait variation and analysis of large numbers of mutagenized animals. It may also prove useful for pharmacogenomic experiments in which individual identity (genotype) is correlated to clinical response. The protocol is synergistic with other experimental paradigms, including computer-assisted tracking, measurement of stress hormones, and dietary administration of nutritional and drug treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerlai R (2003) Zebra fish: an uncharted behavior genetic model. Behav Genet 33:461–468

    Article  PubMed  Google Scholar 

  2. Guo S (2004) Linking genes to brain, behavior and neurological diseases: what can we learn from zebrafish? Genes Brain Behav 3:63–74

    Article  PubMed  CAS  Google Scholar 

  3. Gerlai R (2010) Zebrafish antipredatory responses: a future for translational research? Behav Brain Res 207:223–231

    Article  PubMed  Google Scholar 

  4. Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, Elegante MF, Elkhayat SI, Bartels BK, Tien AK, Tien DH, Mohnot S, Beeson E, Glasgow E, Amri H, Zukowska Z, Kalueff AV (2009) Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 205:38–44

    Article  PubMed  CAS  Google Scholar 

  5. Swain HA, Sigstad C, Scalzo FM (2004) Effects of dizocilpine (MK-801) on circling behavior, swimming activity, and place preference in zebrafish (Danio rerio). Neurotoxicol Teratol 26:725–729

    Article  PubMed  CAS  Google Scholar 

  6. Gerlai R, Lahav M, Guo S, Rosenthal A (2000) Drinks like a fish: zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects. Pharmacol Biochem Behav 67:773–782

    Article  PubMed  CAS  Google Scholar 

  7. Olson BD, Sgourdou P, Downes GB (2010) Analysis of a zebrafish behavioral mutant reveals a dominant mutation in atp2a1/SERCA1. Genesis 48:354–361

    Article  PubMed  CAS  Google Scholar 

  8. Muto A, Orger MB, Wehman AM, Smear MC, Kay JN, Page-McCaw PS, Gahtan E, Xiao T, Nevin LM, Gosse NJ, Staub W, Finger-Baier K, Baier H (2005) Forward genetic analysis of visual behavior in zebrafish. PLoS Genet 1:e66

    Article  PubMed  Google Scholar 

  9. Granato M, van Eeden F, Schach U, Trowe T, Brand M, Furutani-Seiki M, Haffter P, Hammerschmidt M, Heisenberg C, Jiang Y, Kane D, Kelsh R, Mullins M, Odenthal J, Nusslein-Volhard C (1996) Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 123:399–413

    PubMed  CAS  Google Scholar 

  10. Wright D, Rimmer LB, Pritchard VL, Krause J, Butlin RK (2003) Inter and intra-population variation in shoaling and boldness in the zebrafish (Danio rerio). Die Naturwissenschaften 90:374–377

    Article  PubMed  CAS  Google Scholar 

  11. Robison BD, Rowland W (2005) A potential model system for studying the genetics of domestication: behavioral variation among wild and domesticated strains of zebra danio (Danio rerio). Can J Fish Aquat Sci 62:2046–2054

    Article  Google Scholar 

  12. Oswald M, Robison BD (2008) Strain-specific alteration of zebrafish feeding behavior in response to aversive stimuli. Can J Zool 86:1085–1094

    Article  PubMed  Google Scholar 

  13. Benner MJ, Drew RE, Hardy RW, Robison BD (2010) Zebrafish (Danio rerio) vary by strain and sex in their behavioral and transcriptional responses to selenium supplementation. Comp Biochem Physiol A Mol Integr Physiol 157:310–318

    Article  PubMed  Google Scholar 

  14. Moretz JA, Martins EP, Robison BD (2007) Behavioral syndromes and the evolution of correlated behavior in zebrafish. Behav Ecol 18:556–562

    Article  Google Scholar 

  15. Loucks E, Carvan MJ (2004) Strain-dependent effects of developmental ethanol exposure in zebrafish. Neurotoxicol Teratol 26:745–755

    Article  PubMed  CAS  Google Scholar 

  16. Gerlai R, Ahmad F, Prajapati S (2008) Differences in acute alcohol-induced behavioral responses among zebrafish populations. Alcohol Clin Exp Res 32:1763–1773

    Article  PubMed  Google Scholar 

  17. Méplan C, Crosley LK, Nicol F, Beckett GJ, Howie AF, Hill KE, Horgan G, Mathers JC, Arthur JR, Hesketh JE (2007) Genetic polymorphisms in the human selenoprotein P gene determine the response of selenoprotein markers to selenium supplementation in a gender-specific manner (the SELGEN study). FASEB J 21:3063–3074

    Article  PubMed  Google Scholar 

  18. Langheinrich U (2003) Zebrafish: a new model on the pharmaceutical catwalk. Bioessays 25:904–912

    Article  PubMed  CAS  Google Scholar 

  19. Moretz JA, Martins EP, Robison BD (2006) The effects of early and adult social environment on zebrafish (Danio rerio) behavior. Environ Biol Fishes 80:91–101

    Article  Google Scholar 

  20. Altmann J (1974) Observational study of behavior: sampling methods. Behaviour 49:227–267

    Article  PubMed  CAS  Google Scholar 

  21. Drew RE, Rodnick KJ, Settles M, Wacyk J, Churchill E, Powell MS, Hardy RW, Murdoch GK, Hill RA, Robison BD (2008) Effect of starvation on transcriptomes of brain and liver in adult female zebrafish (Danio rerio). Physiol Genomics 35:283–295

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barrie D. Robison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Robison, B.D., Benner, M.J., Singer, M.L., Oswald, M.E. (2012). A High-Throughput and Inexpensive Assay for Anxiety-Related Behaviors in the Zebrafish, Based on Place Preference and Latency to Feed. In: Kalueff, A., Stewart, A. (eds) Zebrafish Protocols for Neurobehavioral Research. Neuromethods, vol 66. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-597-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-597-8_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-596-1

  • Online ISBN: 978-1-61779-597-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics