Skip to main content

Aspects of Experimental Design for Plant Metabolomics Experiments and Guidelines for Growth of Plant Material

  • Protocol
  • First Online:
Plant Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 860))

Abstract

Experiments involve the deliberate variation of one or more factors in order to provoke responses, the identification of which then provides the first step towards functional knowledge. Because environmental, biological, and/or technical noise is unavoidable, biological experiments usually need to be designed. Thus, once the major sources of experimental noise have been identified, individual samples can be grouped, randomised, and/or pooled. Like other ‘omics approaches, metabolomics is characterised by the numbers of analytes largely exceeding sample number. While this unprecedented singularity in biology dramatically increases false discovery, experimental error can nevertheless be decreased in plant metabolomics experiments. For this, each step from plant cultivation to data acquisition needs to be evaluated in order to identify the major sources of error and then an appropriate design can be produced, as with any other experimental approach. The choice of technology, the time at which tissues are harvested, and the way metabolism is quenched also need to be taken into consideration, as they decide which metabolites can be studied. A further recommendation is to document data and metadata in a machine readable way. The latter should also describe every aspect of the experiment. This should provide valuable hints for future experimental design and ultimately give metabolomic data a second life. To facilitate the identification of critical steps, a list of items to be considered before embarking on time-consuming and costly metabolomic experiments is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joyce, A.R. and Palsson, B.O. (2006) The model organism as a system: integrating ‘omics’ data sets. Nature Review Molecular Cell Biology 7, 198–210.

    Article  CAS  Google Scholar 

  2. Ge, H., Walhout, A.J.M., and Vidal, M. (2003) Integrating ‘omic’ information: a bridge between genomics and systems biology. Trends in Genetics 19, 551–60.

    Article  PubMed  CAS  Google Scholar 

  3. Van Dien, S. and Schilling, C.H. (2006) Bringing metabolomics data into the forefront of systems biology. Molecular Systems Biology 2, 1–2.

    Google Scholar 

  4. Liu, E.T. (2005) Systems Biology, Integrative Biology, Predictive Biology. Cell 121, 505–6.

    Article  PubMed  CAS  Google Scholar 

  5. Bacon, F. (1620) The new organon or true directions concerning the interpretation of nature, in The Works Vol. VIII (Spedding J., Ellis R.L., and D.D. Heath, eds.): Taggard and Thompson, Boston, USA; 1863.

    Google Scholar 

  6. Anderson, M.J. and Whitcomb, P.J. (2007) DOE simplified practical tools for effective experimentation. 2nd edition Productivity Press (New York).

    Google Scholar 

  7. Fernandez, L., Romieu, C., Moing, A., Bouquet, A., Maucourt, M., Thomas, M.R., and Torregrosa, L. (2006) The Grapevine fleshless berry mutation. A unique genotype to investigate differences between fleshy and non fleshy fruits. Plant Physiology 140, 537–47.

    CAS  Google Scholar 

  8. Fisher, R. (1926) The arrangement of field experiments. Journal of the Ministry of Agriculture of Great Britain 33, 503–13.

    Google Scholar 

  9. Peric-Concha, N. and Long, P.F. (2003) Mining the microbial metabolome: a new frontier for natural product lead discovery. Drug Discovery Today 8, 1078–84.

    Article  PubMed  CAS  Google Scholar 

  10. Rocke, D.M. (2004) Design and analysis of experiments with high throughput biological assay data. Seminars in Cell & Developmental Biology 15, 703–13.

    CAS  Google Scholar 

  11. Usadel, B., Nagel, A., Steinhauser, D., Gibon, Y., Bläsing, O.E., Redestig, H., et al. (2006) PageMan: An interactive ontology tool to generate, display, and annotate overview graphs for profiling experiments. BMC Bioinformatics 7, 535.

    Article  PubMed  Google Scholar 

  12. Lay, J.O., Liyanagea, R., Borgmannb, S., and Wilkins, C.L. (2006) Problems with the “omics”. Trends in Analytical Chemistry 25, 1046–56.

    Article  CAS  Google Scholar 

  13. Pan, W. (2002) A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments. Bioinformatics 18, 546–54.

    Article  PubMed  CAS  Google Scholar 

  14. Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 57, 289–300.

    Google Scholar 

  15. Festing, M. (1994) Reduction of animal experimental design and quality of experiments. Laboratory Animals 28, 212–21.

    Article  PubMed  CAS  Google Scholar 

  16. Sumner, L.W., Mendes, P., and Dixon, R.A. (2003) Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry 62, 817–36.

    Article  PubMed  CAS  Google Scholar 

  17. Ap Rees, T. and Hill, S.A. (1994) Metabolic control analysis of plant metabolism. Plant, Cell and Environment 17, 587–99.

    Article  Google Scholar 

  18. Fiehn, O. (2002) Metabolomics: the link between genotypes and phenotypes. Plant Molecular Biology 48, 155–71.

    Article  PubMed  CAS  Google Scholar 

  19. Giavalisco, P., Hummel, J., Lisec, J., Inostroza, A., C, Catchpole, G., and Willmitzer, L. (2008) High-Resolution Direct Infusion-Based Mass Spectrometry in Combination with Whole C-13 Metabolome Isotope Labeling Allows Unambiguous Assignment of Chemical Sum Formulas. Analytical Chemistry 80, 9417–25.

    Google Scholar 

  20. Kopka, J., Fernie, A.R., Weckwerth, W., Gibon, Y., and Stitt, M. (2004) Metabolite profiling in plant biology: platforms and destinations. Genome Biology 5, 109.

    Article  PubMed  Google Scholar 

  21. Lommen, A., Weseman, J.M., Smith, G.O., and Noteborn, H.P.J.M. (1998) On the detection of environmental effects on complex matrices combining off-line liquid chromatography and 1H-NMR. Biodegradation 9, 513–25.

    Article  CAS  Google Scholar 

  22. Bailey, N.J.C., Oven, M., Holmes, E., Nicholson, J.K., and Zenk, M.H. (2003) Metabolomic analysis of the consequences of cadmium exposure in Silene cucubalus cell cultures via 1H NMR spectroscopy and chemometrics. Phytochemistry 62, 851–8.

    Article  PubMed  CAS  Google Scholar 

  23. Ott, K.-H., AranÌbar, N., Singh, B., and Stockton, G.W. (2003) Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts. Phytochemistry 62, 971–85.

    CAS  Google Scholar 

  24. Noteborn, H.P.J.M., Lommen, A., van der Jagt, R.C., and Weseman, J.M. (2000) Chemical fingerprinting for the evaluation of unintended secondary metabolic changes in transgenic food crops. Journal of Biotechnology 77, 103–14.

    Article  PubMed  CAS  Google Scholar 

  25. Le Gall, G., DuPont, M.S., Mellon, F.A., Davis, A.L., Collins, G.J., Verhoeyen, M.E., and Colquhoun, I.J. (2003) Characterization and Content of Flavonoid Glycosides in Genetically Modified Tomato (Lycopersicon esculentum) Fruits. Journal of Agricultural and Food Chemistry 51, 2438–46.

    Article  PubMed  Google Scholar 

  26. Saito, K., Dixon, R.A., and Willmitzer, L. (2006) Plant Metabolomics. Springer (Berlin Heidelberg).

    Google Scholar 

  27. Gullberg, J., Jonsson, P., Nordstrom, A., Sjostrom, M., and Moritz, T. (2004) Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Analytical Biochemistry 331, 283–95.

    Article  PubMed  CAS  Google Scholar 

  28. Lunn, J.E., Feil, R, Hendriks, J.H.M., Gibon, Y., Morcuende, R., Osuna, D., et al. (2006) Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochemical Journal 397, 139–48.

    Article  PubMed  CAS  Google Scholar 

  29. Bonferroni, C.E. (1935) Il calcolo delle assicurazioni su gruppi di teste, in Studi in Onore del Professore Salvatore Ortu Carboni. Rome Italy; pp. 13–60.

    Google Scholar 

  30. Yang, M.C.K., Yang, J.J., McIndoe, R.A., and She, J.X. (2003) Microarray experimental design: power and sample size considerations. Physiological Genomics 16, 24–8.

    Article  PubMed  CAS  Google Scholar 

  31. Pawitan, Y., Michiels, S., Koscielny, S., Gusnanto, A., and Ploner, A. (2005) False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics 21, 3017–24.

    Article  PubMed  CAS  Google Scholar 

  32. Jørstad, T.S., Langaas, M., and Bones, A.M. (2007) Understanding sample size: what determines the required number of microarrays for an experiment? Trends in Plant Science 12, 46–50.

    Article  PubMed  Google Scholar 

  33. Broadhurst, D.I. and Kell, D.B. (2006) Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2, 171–96.

    Article  CAS  Google Scholar 

  34. Gibon, Y., Vigeolas, H., Tiessen, A., Geigenberger, P., and Stitt, M. (2002) Sensitive and high throughput metabolite assays for inorganic pyrophosphate, ADPGlc, nucleotide phosphates, and glycolytic intermediates based on a novel enzymic cycling system. Plant Journal 30, 221–35.

    Article  PubMed  CAS  Google Scholar 

  35. Mashego M.R., Wu L., Van Dam J.C., Ras C., Vinke J.L., Van Winden W.A., et al. (2004) MIRACLE: mass isotopomer ratio analysis of U-C-13-labeled extracts. A new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotechnology and Bioengineering 85 620–8.

    CAS  Google Scholar 

  36. Huang, X. and Regnier, F.E. (2008) Differential Metabolomics Using Stable Isotope Labeling and Two-Dimensional Gas Chromatography with Time-of-Flight Mass Spectrometry. Analytical Chemistry 80, 107–14.

    Article  PubMed  CAS  Google Scholar 

  37. Gibon, Y., Usadel, B., Blaesing, O.E., Kamlage, B., Hoehne, M., Trethewey, R., and Stitt, M. (2006) Integration of metabolite with transcript and enzyme activity profiling during diurnal cycles in Arabidopsis rosettes. Genome Biolology 7, R76.

    Article  Google Scholar 

  38. Scholz, M., Gatzek, S., Sterling, A., Fiehn, O., and Selbig, J. (2004) Metabolite fingerprinting: detecting biological features by independent component analysis. Bioinformatics 20, 2447–54.

    Article  PubMed  CAS  Google Scholar 

  39. Schauer, N., Semel, Y., Roessner, U., Gur, A., Balbo, I., Carrari, F., et al. (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nature Biotechnology 24, 447–54.

    Article  PubMed  CAS  Google Scholar 

  40. Keurentjes, J.J., Fu, J., de Vos, C.H., Lommen, A., Hall, R.D., Bino, R.J., et al. (2006) The genetics of plant metabolism. Nature Genetics 38, 842–9.

    Article  PubMed  CAS  Google Scholar 

  41. Rowe, H.C., Hansen, B.G., Halkier, B.A., and Kliebenstein, D.J. (2008) Biochemical Networks and Epistasis Shape the Arabidopsis thaliana Metabolome. The Plant Cell 20, 1199–216.

    Article  PubMed  CAS  Google Scholar 

  42. Fernie, A.R. and Schauer, N. (2009) Metabolomics-assisted breeding: a viable option for crop improvement? Trends in Genetics 25 39–48.

    Article  PubMed  CAS  Google Scholar 

  43. Yu, J., Holland, J.B., McMullen, M.D., and Buckler, E.S. (2008) Genetic Design and Statistical Power of Nested Association Mapping in Maize. Genetics 178, 539–51.

    Article  PubMed  Google Scholar 

  44. Thimm, O., Bläsing, O.E., Usadel, B., and Gibon, Y. (2006) Evaluation of the transcriptome and genome to inform the study of metabolic control, in Control of Primary Metabolism in Plants. (Plaxton B, McManus M, eds.) Blackwell Publishing Oxford (UK). pp. 1–23.

    Google Scholar 

  45. Stitt, M., Gibon, Y., Lunn, J.E., and Piques, M. (2006) Multilevel genomics analysis of carbon signalling during low carbon availability: coordinating the supply and utilisation of carbon in a fluctuating environment. Functional Plant Biology 34, 526–49.

    Article  Google Scholar 

  46. Hannemann, J., Poorter, H., Usadel, B., Bläsing, O.E., Finck, A., Tardieu, F., et al. (2009) Xeml Lab: a software suite for a standardised description of the growth environment of plants. Plant, Cell and Environment 32, 1185–200.

    Google Scholar 

  47. Sultan, S.E. (2000) Phenotypic plasticity for plant development, function and life history. Trends in Plant Science 5, 537–42.

    Article  PubMed  CAS  Google Scholar 

  48. Allan, W.L. and Shelp, B.J. (2006) Fluctuations of gamma-aminobutyrate, gamma-hydroxybutyrate and related amino acids in Arabidopsis leaves as a function of the light–dark cycle, leaf age, and N stress. Canadian Journal of Botany 84, 1339–46.

    Article  CAS  Google Scholar 

  49. Geiger, D.R. and Servaites, J.C. (1994) Diurnal regulation of photosynthetic carbon metabolism in C3 plants. Annual Review of Plant Physiology 45, 235–56.

    Article  Google Scholar 

  50. Winter, H., Lohaus, G., and Heldt, H.W. (1992) Phloem transport of amino-acids in relation to their cytosolic levels in barley leaves. Plant Physiology 99, 996–1004.

    Article  PubMed  CAS  Google Scholar 

  51. Fahnenstich, H., Saigo, M., Niessen, M., Drincovich, M., F, Flügge, U.-I., and Maurino, V.G. (2008) Malate and fumarate emerge as key players in primary metabolism: Arabidopsis thaliana overexpressing C4-NADP-ME offer a way to manipulate the levels of malate and to analyse the physiological consequences, in Photosynthesis. Energy from the Sun (J.F. Allen, E. Gantt, J.H. Golbeck and B. Osmond eds.) Springer-Verlag, Heidelberg, Germany pp. 971–5.

    Google Scholar 

  52. Ma, F. and Cheng, L. (2003) The sun-exposed peel of apple fruit has higher xanthophyll cycle dependent thermal dissipation and antioxidants of the ascorbate/glutathione pathway than the shaded peel. Plant Science 165, 819–27.

    Article  CAS  Google Scholar 

  53. Sharkey, T.D., Stitt, M., Heineke, D., Gerhardt, R., Raschke, K., and Heldt, H.W. (1986) Limitation of Photosynthesis by Carbon Metabolism: II. O2-Insensitive CO2 Uptake Results from Limitation Of Triose Phosphate Utilization. Plant Physiology 81, 1123–9.

    Article  PubMed  CAS  Google Scholar 

  54. Ap Rees, T., Fuller, W.A., and Wright, B.W. (1977) Measurements of glycolytic intermediates during the onset of thermogenesis in the spadix of Arum maculatum. Biochimica Biophysica Acta 461, 274–82.

    Article  CAS  Google Scholar 

  55. Verdonk, J.C., de Vos, C.H.R., Verhoeven, H.A., Haring, M.A., van Tunen, A.J., and Schuurink, R.C. (2003) Regulation of floral scent production in petunia revealed by targeted metabolomics. Phytochemistry 62, 997–1008.

    Article  PubMed  CAS  Google Scholar 

  56. Tikunov Y.M., Verstappen F.W., and Hall R.D. (2007) Metabolomic profiling of natural volatiles: headspace trapping: GC-MS. Methods in Molecular Biology 358 39–53.

    Article  PubMed  CAS  Google Scholar 

  57. Tikunov, Y., Lommen, A., de Vos, C.H., Verhoeven, H.A., Bino, R.J., Hall, R.D., and Bovy, A.G. (2005) A Novel Approach for Nontargeted Data Analysis for Metabolomics. Large-Scale Profiling of Tomato Fruit Volatiles. Plant Physiology 139, 1125–37.

    CAS  Google Scholar 

  58. Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., et al. (2001) Minimum information about a microarray experiment (MIAME) – toward standards for microarray data. Nature Genetics 29, 365–71.

    Article  PubMed  CAS  Google Scholar 

  59. Jenkins, H., Hardy, N., Beckmann, M., Draper, J., Smith, A.R., Taylor, J., et al. (2004) A proposed framework for the description of plant metabolomics experiments and their results. Nature Biotechnology 22, 1601–6.

    Article  PubMed  CAS  Google Scholar 

  60. Fiehn, O., Wohlgemuth, G., Scholz, M., Kind, T., Lee Do, Y., Lu, Y., Moon, S., and Nikolau, B. (2008) Quality control for plant metabolomics: reporting MSI-compliant studies. The Plant Journal 53 691–704.

    Article  PubMed  CAS  Google Scholar 

  61. Gruber, T.R. (1995) Toward principles for the design of ontologies used for knowledge sharing? International Journal of Human-Computer Studies 43, 907–28.

    Article  Google Scholar 

  62. Larsson, O. and Sandberg, R. (2006) Lack of correct data format and comparability limits future integrative microarray research. Nature Biotechnology 24, 1322–3.

    Article  PubMed  CAS  Google Scholar 

  63. Scholz, M. and Fiehn, O. (2007) Setup X – A public study design database for metabolomic projects. Pacific Symposium on Biocomputing 12, 169–80.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the EU META-PHOR Project (FOOD-CT-2006-036220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Gibon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gibon, Y., Rolin, D. (2011). Aspects of Experimental Design for Plant Metabolomics Experiments and Guidelines for Growth of Plant Material. In: Hardy, N., Hall, R. (eds) Plant Metabolomics. Methods in Molecular Biology, vol 860. Humana Press. https://doi.org/10.1007/978-1-61779-594-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-594-7_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-593-0

  • Online ISBN: 978-1-61779-594-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics