DNA Barcodes pp 183-205 | Cite as

Methods for DNA Barcoding of Fungi

  • Ursula EberhardtEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 858)


This chapter describes methods currently used for DNA barcoding of fungi, including some comments on the barcoding of aged herbarium material. The collecting procedures are focussed on macro-fungi. The laboratory methods are for medium-throughput DNA barcoding, targeted at the 96-well format, but without the assistance of robotics. In the absence of an approved and standardized DNA barcoding locus for fungi, the chapter outlines the amplification and sequencing of nuclear ribosomal genes, ITS, and LSU D1/D2 which are most widely used for the identification of fungi from diverse environments.

Key words

ITS LSU D1/D2 Museum specimens Silica columns Glass fibre filter plates DNA barcode 



My former colleagues from the Department of Forest Mycology and Pathology at the Swedish University of Agriculture Science in Uppsala, the members of the Genome Center of Uppsala University, and my current colleagues from the CBS-KNAW Fungal Biodiversity Centre (Centraalbureau voor Schimmelcultures) in Utrecht have contributed over the years to the protocols and experiences assembled in this chapter. Their contributions are greatly appreciated.


  1. 1.
    Crous PW, Verkley GJM, Groenewald JZ, Samson RA (2009) Fungal biodiversity. CBS laboratory manual series vol. 1. CBS Fungal Biodiversity Centre, UtrechtGoogle Scholar
  2. 2.
    Mueller GM, Bills GF, Foster MS (2004) Biodiversity of fungi. Inventory and monitoring methods. Elsevier Academic Press, LondonGoogle Scholar
  3. 3.
    Stockinger H, Krüger M, Schüßler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461–474PubMedCrossRefGoogle Scholar
  4. 4.
    Nuytinck J, Verbeken A, Miller SL (2007) Worldwide phylogeny of Lactarius section Deliciosi inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia 99:820–832PubMedCrossRefGoogle Scholar
  5. 5.
    Brock PM, Döring H, Bidartondo MI (2009) How to know unknown fungi: the role of a herbarium. New Phytol 181:719–724PubMedCrossRefGoogle Scholar
  6. 6.
    Crespo A, Lumbsch HT (2010) Cryptic species in lichen-forming fungi. IMA Fungus 1:167–170PubMedCrossRefGoogle Scholar
  7. 7.
    Del-Prado R, Cubas P, Lumbsch HT, Divakar PK, Blanco O, Amo de Paz G, Molina C, Crespo A (2010) Genetic distances within and among species in monophyletic lineages of Parmeliaceae (Ascomycota) as a tool for taxon delimitation. Mol Phylogenet Evol 56:125–133PubMedCrossRefGoogle Scholar
  8. 8.
    Taylor JW, Turner E, Pringle A et al (2007) Fungal species: thoughts on their recognition, maintenance and selection. In: Gadd GM, Watkinson SC, Dyer PS (eds) Fungi in the ­environment. Cambridge University Press, Cambridge, pp 313–339Google Scholar
  9. 9.
    Geiser DM, Klich MA, Frisvad JC et al (2007) The current status of species recognition and identification in Aspergillus. Stud Mycol 59:1–10PubMedCrossRefGoogle Scholar
  10. 10.
    Seifert KA, Samson RA, deWaard JR et al (2007) Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. Proc Natl Acad Sci USA 104:3901–3906PubMedCrossRefGoogle Scholar
  11. 11.
    Aveskamp MM, de Gruyter J, Woudenberg JHC et al (2010) Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma and related pleosporalean genera. Stud Mycol 65:1–60PubMedCrossRefGoogle Scholar
  12. 12.
    Taylor AFS, Hills A, Simonini G et al (2007) Xerocomus silwoodensis sp. nov., a new species within the European X. subtomentosus complex. Mycol Res 111:403–408PubMedCrossRefGoogle Scholar
  13. 13.
    Ivanova NV, Fazekas AJ, Hebert PDN (2008) Semi-automated, membrane-based protocol for DNA isolation from plants. Plant Mol Biol Rep 26:186–198CrossRefGoogle Scholar
  14. 14.
    Ryman S, Holmåsen I (1992) Svampar. En fälthandbok, 3rd edn. Interpublishing, StockholmGoogle Scholar
  15. 15.
    Halling RE (1996) Recommendations for collecting mushrooms for scientific study. In: Alexiades MN, Sheldon JW (eds) Selected guidelines for ethnobotanical research: a field manual. Botanical Garden Press, New York, pp 135–141Google Scholar
  16. 16.
    Largent DL, Baroni TJ (1988) How to identify mushrooms to genus VI: modern genera. Mad River Press, Eureka, CAGoogle Scholar
  17. 17.
    White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols a guide to methods and applications. Academic Press, San Diego, CA, pp 282–287Google Scholar
  18. 18.
    Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for Basidiomycetes – ­application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118PubMedCrossRefGoogle Scholar
  19. 19.
    De Hoog GS, Gerrits van den Ende AHG (1998) Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses 41:183–189PubMedCrossRefGoogle Scholar
  20. 20.
    Rehner SA, Samuels GJ (1994) Taxonomy and phylogeny of Gliocladium analysed from nuclear large subunit ribosomal DNA sequences. Mycol Res 98:625–634CrossRefGoogle Scholar
  21. 21.
    O’Donnell K (1993) Fusarium and its near relatives. In: Reynolds DR, Taylor JW (eds) The fungal holomoph: mitotic, meiotic, and pleomorphic speciation in fungal systematics. CAB International, Wallingford, pp 225–233Google Scholar
  22. 22.
    Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several species of Cryptococus. J Bacteriol 172:4238–4246PubMedGoogle Scholar
  23. 23.
    Groenewald M, Groenewald JZ, Crous PW (2005) Distinct species exists within the C. apii morphotype. Phytopathology 95:951–959PubMedCrossRefGoogle Scholar
  24. 24.
    Ratnasingham S, Hebert PDN (2007) BOLD: The barcode of life data system ( Mol Ecol Notes 7:355–364
  25. 25.
    Abarenkov K, Tedersoo L, Nilsson RH et al (2010) PlutoF—a Web based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences. Evol Bioinformatics 6:1–8Google Scholar
  26. 26.
    Kõljalg U, Larsson K-H, Abarenkov K et al (2005) UNITE – a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068PubMedCrossRefGoogle Scholar
  27. 27.
    Dentinger BM, Margaritescu S, Moncalvo J-M (2010) Rapid and reliable high-throughput methods of DNA extraction for use in barcoding and molecular systematics of mushrooms. Mol Ecol Res 10:628–633CrossRefGoogle Scholar
  28. 28.
    Martin K, Rygiewicz P (2005) Fungal-specific primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol 5:28PubMedCrossRefGoogle Scholar
  29. 29.
    Vancov T, Keen B (2009) Amplification of soil fungal community DNA using the ITS86F and ITS4 primers. FEMS Microbiol Lett 296:91–96PubMedCrossRefGoogle Scholar
  30. 30.
    Bellemain E, Carlsen T, Brochmann C et al (2010) Environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol 10:189PubMedCrossRefGoogle Scholar
  31. 31.
    Simon UK, Weiss M (2008) Intragenomic variation of fungal ribosomal genes is higher than previously thought. Mol Bio Evol 25:2251–2254CrossRefGoogle Scholar
  32. 32.
    Bakkeren G, Kronstad JW, Lévesque CA (2000) Comparison of AFLP fingerprints and ITS sequences as phylogenetic markers in Ustilaginomycetes. Mycologia 92:510–521CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.CBS-KNAW Fungal Biodiversity Centre, Centraalbureau voor SchimmelculturesUtrechtThe Netherlands

Personalised recommendations