Skip to main content

DNA Barcoding Amphibians and Reptiles

  • Protocol
  • First Online:
DNA Barcodes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 858))

Abstract

Only a few major research programs are currently targeting COI barcoding of amphibians and reptiles (including chelonians and crocodiles), two major groups of tetrapods. Amphibian and reptile species are typically old, strongly divergent, and contain deep conspecific lineages which might lead to problems in species assignment with incomplete reference databases. As far as known, there is no single pair of COI primers that will guarantee a sufficient rate of success across all amphibian and reptile taxa, or within major subclades of amphibians and reptiles, which means that the PCR amplification strategy needs to be adjusted depending on the specific research question. In general, many more amphibian and reptile taxa have been sequenced for 16S rDNA, which for some purposes may be a suitable complementary marker, at least until a more comprehensive COI reference database becomes available. DNA barcoding has successfully been used to identify amphibian larval stages (tadpoles) in species-rich tropical assemblages. Tissue sampling, DNA extraction, and amplification of COI is straightforward in amphibians and reptiles. Single primer pairs are likely to have a failure rate between 5 and 50% if taxa of a wide taxonomic range are targeted; in such cases the use of primer cocktails or subsequent hierarchical usage of different primer pairs is necessary. If the target group is taxonomically limited, many studies have followed a strategy of designing specific primers which then allow an easy and reliable amplification of all samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AmphibiaWeb (2010) Information on amphibian biology and conservation [Web application]. AmphibiaWeb, Berkeley, CA. http://www.amphibiaweb.org/. Accessed 1 Feb 2012

  2. Uetz P, Goll J, Hallermann J (2010) The reptile database [web application]. http://www.reptile-database.org/. Accessed 1 Nov 2010

  3. Vargas SM, Araújo FCF, Santos FR (2009) DNA barcoding of Brazilian sea turtles (Testudines). Genet Mol Biol 32:608–612

    Article  PubMed  CAS  Google Scholar 

  4. Naro-Maciel E, Reid B, Fitzsimmons NN et al (2010) DNA barcodes for globally threatened marine turtles: a registry approach to documenting biodiversity. Mol Ecol Res 10:252–263

    Article  CAS  Google Scholar 

  5. Eaton MJ, Meyers GL, Kolokotronis SO et al (2010) Barcoding bushmeat: molecular identification of Central African and South American harvested vertebrates. Conserv Genet 11:1389–1404

    Article  Google Scholar 

  6. Eaton MJ, Martin A, Thorbjarnarson J, Amato G (2009) Species-level diversification of African dwarf crocodiles (Genus Osteolaemus). A geographic and phylogenetic perspective. Mol Phylogenet Evol 50:496–506

    Article  PubMed  CAS  Google Scholar 

  7. Vences M, Thomas M, Bonett RM, Vieites DR (2005) Deciphering amphibian diversity through DNA barcoding: chances and challenges. Phil Trans R Soc Lond 360:1859–1868

    Article  CAS  Google Scholar 

  8. Vences M, Thomas M, van der Meijden A et al (2005) Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Front Zool 2:5

    Article  PubMed  Google Scholar 

  9. Smith MA, Poyarkov NA Jr, Hebert PDN (2008) CO1 DNA barcoding amphibians: take the chance, meet the challenge. Mol Ecol Res 8:235–246

    Article  CAS  Google Scholar 

  10. Crawford AJ, Lips KR, Bermingham E (2010) Epidemic disease decimates amphibian abundance, species diversity, and evolutionary history in the highlands of central Panama. Proc Natl Acad Sci USA 107:13777–13782

    Article  PubMed  CAS  Google Scholar 

  11. Padial JM, de la Riva I (2007) Integrative taxonomists should use and produce DNA barcodes. Zootaxa 1586:67–68

    Google Scholar 

  12. Padial JM, Miralles A, de la Riva I, Vences M (2010) The integrative future of taxonomy. Front Zool 7:e16

    Article  Google Scholar 

  13. Kozak KH, Larson A, Bonett RM, Harmon LJ (2005) Phylogenetic analysis of ecomorphological divergence, community structure, and diversification rates in dusky salamanders, Desmognathus. Evolution 59:2000–2016

    PubMed  Google Scholar 

  14. Weisrock DW, Papenfuss TJ, Macey JR et al (2006) A molecular assessment of phylogenetic relationships and lineage accumulation rates within the family Salamandridae (Amphibia, Caudata). Mol Phylogenet Evol 41:368–383

    Article  PubMed  CAS  Google Scholar 

  15. Kumazawa Y, Endo H (2004) Mitochondrial genome of the Komodo dragon: efficient sequencing method with reptile-oriented primers and novel gene rearrangements. DNA Res 11:115–125

    Article  PubMed  CAS  Google Scholar 

  16. Kumazawa Y (2004) Mitochondrial DNA sequences of five squamates: phylogenetic affiliation of snakes. DNA Res 11:137–144

    Article  PubMed  CAS  Google Scholar 

  17. Dong S, Kumazawa Y (2005) Complete mitochondrial DNA sequences of six snakes: phylogenetic relationships and molecular evolution of genomic features. J Mol Evol 61:12–22

    Article  PubMed  CAS  Google Scholar 

  18. Parham JF, Feldman CR, Boore JL (2006) The complete mitochondrial genome of the enigmatic bigheaded turtle (Platysternon): description of unusual genomic features and the reconciliation of phylogenetic hypotheses based on mitochondrial and nuclear DNA. BMC Evol Biol 6:11

    Article  PubMed  Google Scholar 

  19. Macey JR, Kuehl JV, Larson A et al (2008) Socotra Island the forgotten fragment of Gondwana: unmasking chameleon lizard history with complete mitochondrial genomic data. Mol Phylogenet Evol 49:1015–1018

    Article  PubMed  CAS  Google Scholar 

  20. Okajima Y, Kumazawa Y (2009) Mitogenomic perspectives into iguanid phylogeny and biogeography: Gondwanan vicariance for the origin of Madagascan oplurines. Gene 441:28–35

    Article  PubMed  CAS  Google Scholar 

  21. Okajima Y, Kumazawa Y (2010) Mitochondrial genomes of acrodont lizards: timing of gene rearrangements and phylogenetic and biogeographic implications. BMC Evol Biol 10:141

    Article  PubMed  Google Scholar 

  22. Mueller RL, Macey JR, Jaekel M et al (2004) Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes. Proc Natl Acad Sci USA 101:13820–13825

    Article  PubMed  CAS  Google Scholar 

  23. San Mauro D, Gower DJ, Oommen OV et al (2004) Phylogeny of caecilian amphibians (Gymnophiona) based on complete mitochondrial genomes and nuclear RAG1. Mol Phylogenet Evol 33:413–427

    Article  PubMed  CAS  Google Scholar 

  24. Zhang P, Papenfuss TJ, Wake MH et al (2008) Phylogeny and biogeography of the family Salamandridae (Amphibia: Caudata) inferred from complete mitochondrial genomes. Mol Phylogenet Evol 49:586–597

    Article  PubMed  CAS  Google Scholar 

  25. Zhang P, Zhou H, Chen YQ, Liu YF, Qu LH (2005) Mitogenomic perspectives on the origin and phylogeny of living amphibians. Syst Biol 54:391–400

    Article  PubMed  Google Scholar 

  26. Kurabayashi A, Sumida M (2009) PCR primers for the Neobatrachian mitochondrial genome. Curr Herpetol 28:1–11

    Article  Google Scholar 

  27. Goebel AM, Donnelly J, Atz M (1999) PCR primers and amplification methods for the 12S ribosomal DNA, cytochrome oxidase I, cytochrome b, the control region in bufonids and other frogs and an overview of PCR primers available for analyses of amphibians. Mol Phylogenet Evol 11:163–199

    Article  PubMed  CAS  Google Scholar 

  28. Folmer OM, Black W, Hoeh R et al (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    PubMed  CAS  Google Scholar 

  29. Vieites DR, Wollenberg KC, Andreone F et al (2009) Vast underestimation of Madagascar’s biodiversity evidenced by an integrative amphibian inventory. Proc Natl Acad Sci USA 106:8267–8272

    Article  PubMed  CAS  Google Scholar 

  30. Fouquet A, Gilles A, Vences M et al (2007) Underestimation of species richness in Neotropical frogs revealed by mtDNA analyses. PLoS One 2:e1109

    Article  PubMed  Google Scholar 

  31. Nagy ZT (2010) A hands-on overview of tissue preservation methods for molecular genetic analyses. Org Divers Evol 10:91–105

    Article  Google Scholar 

  32. Strauss A, Reeve E, Randrianiaina RD et al (2010) The world’s richest tadpole communities show functional redundancy and low functional diversity: ecological data on Madagascar’s stream-dwelling amphibian larvae. BMC Ecol 10:12

    Article  PubMed  Google Scholar 

  33. Wake DB, Vredenburg VT (2008) Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc Natl Acad Sci USA 105:11466–11473

    Article  PubMed  CAS  Google Scholar 

  34. Boyle DG, Boyle DB, Olsen V et al (2004) Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Organ 60:141–148

    Article  PubMed  CAS  Google Scholar 

  35. Speare RL, Berger LF, Skerratt RA et al (2004) Hygiene protocol for handling amphibians in field studies. Amphibian Disease Group, James Cook University, Townsville, Australia. http://www.jcu.edu.au/school/phtm/PHTM/frogs/field-hygiene.pdf

  36. Bruford MW, Hanotte O, Brookfield JFY, Burke T (1992) Single-locus and multilocus DNA fingerprint. In: Hoelzel AR (ed) Molecular genetic analysis of populations: a practical approach. IRL Press, Oxford, pp 225–270

    Google Scholar 

  37. Burns EL, Eldridge MDB, Crayn DM, Houlden BA (2007) Low phylogeographic structure in a widespread endangered Australian frog Litoria aurea (Anura: Hylidae). Cons Genet 8:17–32

    Article  Google Scholar 

  38. Zheng Y, Fu J, Li S (2009) Toward understanding the distribution of Laurasian frogs: a test of Savage’s biogeographical hypothesis using the genus Bombina. Mol Phylogenet Evol 52:70–83

    Article  PubMed  CAS  Google Scholar 

  39. Darst CR, Cannatella DC (2004) Novel relationships among hyloid frogs inferred from 12S and 16S mitochondrial DNA sequences. Mol Phylogenet Evol 31:462–475

    Article  PubMed  CAS  Google Scholar 

  40. Frost DR, Grant T, Faivovich J et al (2006) The amphibian tree of life. Bull Am Mus Nat Hist 297:1–370

    Article  Google Scholar 

  41. Heinicke MP, Duellman WE, Hedges SB (2007) Major Caribbean and Central American frog faunas originated by ancient oceanic dispersal. Proc Natl Acad Sci USA 104:10092–10097

    Article  PubMed  CAS  Google Scholar 

  42. Wollenberg KC, Vieites DR, van der Meijden A et al (2008) Patterns of endemism and species richness in Malagasy cophyline frogs support a key role of mountainous areas for speciation. Evolution 62:1890–1907

    Article  PubMed  Google Scholar 

  43. Santos JC, Coloma LA, Summers K et al (2009) Amazonian amphibian diversity is primarily derived from late Miocene Andean ancestors. PLoS Biol 7:1–14

    Article  CAS  Google Scholar 

  44. Van Bocxlaer I, Loader SP, Roelants K et al (2010) Gradual adaptation toward a range-expansion phenotype initiated the global radiation of toads. Science 327:679–682

    Article  PubMed  Google Scholar 

  45. Palumbi S, Martin A, Romano S et al (1991) The simple fool’s guide to PCR. Department of Zoology, University of Hawaii, Hawaii

    Google Scholar 

  46. Kessing B, Croom H, Martin A et al (1989) The simple fool’s guide to PCR. Department of Zoology, University of Hawaii, Hawaii

    Google Scholar 

  47. Nielsen R, Matz M (2006) Statistical approaches for DNA barcoding. Syst Biol 55:162–169

    Article  PubMed  Google Scholar 

  48. Weigt LA, Crawford AJ, Rand AS, Ryan MJ (2005) Biogeography of the túngara frog, Physalaemus pustulosus: a molecular perspective. Mol Ecol 14:3857–3876

    Article  PubMed  CAS  Google Scholar 

  49. Crawford AJ, Bermingham E, Polanía SC (2007) The role of tropical dry forest as a long-term barrier to dispersal: a comparative phylogeographical analysis of dry forest tolerant and intolerant frogs. Mol Ecol 16:4789–4807

    Article  PubMed  CAS  Google Scholar 

  50. Cannatella DC, Hillis DM, Chippindale PT et al (1998) Phylogeny of frogs of the Physalaemus pustulosus species group, with an examination of data incongruence. Syst Biol 47:311–335

    Article  PubMed  CAS  Google Scholar 

  51. Wang IJ, Shaffer HB (2008) Rapid color evolution in an aposematic species: a phylogenetic analysis of color variation in the strikingly polymorphic strawberry poison-dart frog. Evolution 62:2742–2759

    Article  PubMed  CAS  Google Scholar 

  52. Ward RD, Zemlak TS, Innes BH et al (2005) DNA barcoding Australia’s fish species. Phil Trans R Soc Lond B 360:1847–1857

    Article  CAS  Google Scholar 

  53. Du Preez LH, Kunene N, Hanner R et al (2009) Population-specific incidence of testicular ovarian follicles in Xenopus laevis from South Africa: a potential issue in endocrine testing. Aquat Toxicol 95:10–16

    Article  PubMed  Google Scholar 

  54. Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN (2007) Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes 7:544–548

    Article  CAS  Google Scholar 

  55. Ivanova NV, deWaard JR, Hebert PDN (2006) An inexpensive automation-friendly protocol for recovering high-quality DNA. Mol Ecol Notes 6:998–1002

    Article  CAS  Google Scholar 

  56. Hebert PDN, Penton EH, Burns JM et al (2004) Ten species in one: DNA barcoding reveals cryptic species in the Neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817

    Article  PubMed  CAS  Google Scholar 

  57. Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through COI DNA barcodes. PLoS Biol 2:1–7

    Article  Google Scholar 

  58. Beamer DA, Lamb T (2008) Dusky salamanders (Desmognathus, Plethodontidae) from the Coastal Plain: multiple independent lineages and their bearing on the molecular phylogeny of the genus. Mol Phylogenet Evol 47:143–153

    Article  PubMed  CAS  Google Scholar 

  59. Schneider CJ, Cunningham M, Moritz C (1998) Comparative phylogeography and the history of endemic vertebrates in the Wet Tropics rainforests of Australia. Mol Ecol 7:487–498

    Article  Google Scholar 

  60. James CH, Moritz C (2000) Intraspecific phylogeography in the sedge frog Litoria fallax (Hylidae) indicates pre-Pleistocene vicariance of an open forest species from eastern Australia. Mol Ecol 9:349–358

    Article  PubMed  CAS  Google Scholar 

  61. Hoskin CJ, Higgie MA, McDonald KR, Moritz C (2005) Reinforcement drives rapid allopatric speciation. Nature 437:1353–1356

    Article  PubMed  CAS  Google Scholar 

  62. McGuigan K, McDonald K, Parris K, Moritz C (1998) Mitochondrial DNA diversity and historical biogeography of a wet forest restricted frog (Litoria pearsoniana) from mid-east Australia. Mol Ecol 7:175–186

    Article  PubMed  CAS  Google Scholar 

  63. Hawkins MA, Sites JW Jr, Noonan BP (2007) Dendropsophus minutus (Anura: Hylidae) of the Guiana Shield using DNA barcodes to assess identity and diversity. Zootaxa 1540:61–67

    Google Scholar 

  64. Feldman CR, Parham JF (2004) Molecular ­systematics of Old World stripe-necked turtles (Testudines: Mauremys). As Herp Res 1:28–37

    Google Scholar 

  65. Kasapidis P, Magoulas A, Mylonas M, Zouros E (2005) The phylogeography of the gecko Cyrtopodion kotschyi (Reptilia: Gekkonidae) in the Aegean archipelago. Mol Phylogenet Evol 35:612–623

    Article  PubMed  CAS  Google Scholar 

  66. Kyriazi P, Poulakakis N, Parmakelis A et al (2008) Mitochondrial DNA reveals the genealogical history of the snake-eyed lizards (Ophisops elegans and O. occidentalis) (Sauria: Lacertidae). Mol Phylogenet Evol 49:795–805

    Article  PubMed  CAS  Google Scholar 

  67. Simon C, Frati F, Beckenbach A et al (1994) Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701

    CAS  Google Scholar 

  68. Frost DR, Crafts HM, Fitzgerald LA, Titus TA (1998) Geographic variation, species recognition, and molecular evolution of cytochrome oxidase I in the Tropidurus spinulosus complex (Iguania: Tropiduridae). Copeia 1998:839–851

    Article  Google Scholar 

  69. Georges A, Birrell J, Saint KM et al (1998) A phylogeny for side-necked turtles (Pleurodira) based on mitochondrial gene sequence variation. Biol J Linn Soc 67:213–246

    Article  Google Scholar 

  70. Daniels SR, Heideman NJL, Hendricks MGJ, Crandall KA (2006) Taxonomic subdivisions within the fossorial skink subfamily Acontinae (Squamata: Scincidae) reconsidered: a multilocus perspective. Zool Scripta 35:353–362

    Article  Google Scholar 

  71. Daniels SR, Hofmeyr MD, Henen BT, Crandall KA (2007) Living with the genetic signature of Miocene induced change: evidence from the phylogeographic structure of the endemic angulate tortoise Chersina angulata. Mol Phylogenet Evol 45:915–926

    Article  PubMed  CAS  Google Scholar 

  72. Daniels SR, Heideman NJL, Hendricks MGJ (2009) Examination of evolutionary relationships in the Cape fossorial skink species complex (Acontinae: Acontias meleagris meleagris) reveals the presence of five cryptic lineages. Zool Scripta 38:449–463

    Article  Google Scholar 

  73. Venegas-Anaya M, Crawford AJ, Escobedo Galván AH et al (2008) Mitochondrial DNA phylogeography of Caiman crocodilus in Mesoamerica and South America. J Exp Zool 309A:614–627

    Article  CAS  Google Scholar 

  74. Stenson AG, Thorpe RS, Malhotra A (2004) Evolutionary differentiation of bimaculatus group anoles based on analyses of mtDNA and microsatellite data. Mol Phylogenet Evol 32:1–10

    Article  PubMed  CAS  Google Scholar 

  75. Makowsky R, Marshall JC Jr, McVay J et al (2010) Phylogeographic analysis and environmental niche modeling of the plain-bellied watersnake (Nerodia erythrogaster) reveals low levels of genetic and ecological differentiation. Mol Phylogenet Evol 55:985–995

    Article  PubMed  Google Scholar 

  76. Austin CC, Spataro M, Peterson S et al (2010) Conservation genetics of Boelen’s python (Morelia boeleni) from New Guinea: reduced genetic diversity and divergence of captive and wild animals. Cons Genet 11:889–896

    Article  Google Scholar 

  77. Nagy ZT, Sonet G, Glaw F, Vences M (2012) First large-scale DNA barcoding assessment of reptiles in the biodiversity hotspot of Madagascar, based on newly designed COI primers. PLoS ONE 7:e34506

    Google Scholar 

  78. Parham JF, Stuart BL, Bour R, Fritz U (2004) Evolutionary distinctiveness of the extinct Yunnan box turtle (Cuora yunnanensis) revealed by DNA from an old museum specimen. Proc R Soc Lond B 271:S391–S394

    Article  Google Scholar 

  79. Stuart BL, Parham JF (2004) Molecular phylogeny of the critically endangered Indochinese box turtle (Cuora galbinifrons). Mol Phylogenet Evol 31:164–177

    Article  PubMed  CAS  Google Scholar 

  80. Passoni JC, Benozzati ML, Rodrigues MT (2008) Phylogeny, species limits, and biogeography of the Brazilian lizards of the genus Eurolophosaurus (Squamata: Tropiduridae) as inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 46:403–414

    Article  PubMed  CAS  Google Scholar 

  81. Zhou K, Wang Q (2008) New species of Gekko (Squamata: Sauria: Gekkonidae) from China: morphological and molecular evidence. Zootaxa 1778:59–68

    Google Scholar 

  82. Schätti B, Utiger U (2001) Hemerophis, a new genus for Zamenis socotrae Günther, and a contribution to the phylogeny of Old World racers, whip snakes and related genera (Reptilia: Squamata: Colubrinae). Rev Suisse Zool 108:919–948

    Google Scholar 

  83. Utiger U, Helfenberger N, Schätti B et al (2002) Molecular systematics and phylogeny of Old and New World ratsnakes, Elaphe auct., and related genera (Reptilia, Squamata, Colubridae). Russ J Herpetol 9:105–124

    Google Scholar 

  84. Che J, Chen HM, Yang JX et al (2012) Universal COI primers for DNA barcoding amphibians. Mol Ecol Resour 12:247–258

    Google Scholar 

Download references

Acknowledgment

We thank the Belgian Science Policy Office for supporting the Joint Experimental Molecular Unit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Vences .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vences, M., Nagy, Z.T., Sonet, G., Verheyen, E. (2012). DNA Barcoding Amphibians and Reptiles. In: Kress, W., Erickson, D. (eds) DNA Barcodes. Methods in Molecular Biology, vol 858. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-591-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-591-6_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-590-9

  • Online ISBN: 978-1-61779-591-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics