Advertisement

DNA Barcodes pp 441-458 | Cite as

Generating Plant DNA Barcodes for Trees in Long-Term Forest Dynamics Plots

  • W. John KressEmail author
  • Ida C. Lopez
  • David L. Erickson
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 858)

Abstract

Long-term forest dynamics plots, such as those maintained and coordinated by the Center for Tropical Forest Science and Smithsonian Institution Global Earth Observatories (CTFS/SIGEO), are a rich source of biological data that describe the demographics, ecology, and evolution of pristine and disturbed forest habitats across ecosystems. As molecular techniques for plant systematic and ecological studies, including DNA barcodes, have improved so have the methods for collecting tissue samples, generating DNA sequences, and managing genetic data. Tissue samples can be processed at the point of collection and stored in silica gel for extended periods of time or samples can be taken from historical museum collections with sufficient DNA yields for study. In this chapter, we provide a workflow that includes the tracking of data from field collection of tissue samples to the DNA barcode sequence laboratory to final analyses for forensic and phylogenetic investigations.

Key words

DNA barcode Phylogenetics SIGEO Community ecology Forensics Conservation 

Notes

Acknowledgments

We thank Stuart Davies, Oris Sanjur, Eldredge Bermingham, and Nathan Swenson for help in developing the methodologies described here, and the Smithsonian Institution and CTFS provided funding support

References

  1. 1.
    Hubbell SP, Foster RB (1983) Diversity of canopy trees in a neotropical forest and implications for the conservation of tropical trees. In: Sutton SJ, Whitmore TC, Chadwick AC (eds) Tropical rain forest. Ecology and management. Blackwell Science, Oxford, pp 25–41Google Scholar
  2. 2.
    Condit R (1998) Tropical forest census plots: methods and results from Barro Colorado Island, Panama, and a comparison with other plots. Blackwell Scientific, New YorkGoogle Scholar
  3. 3.
    Scholes RJ, Mace GM, Turner W et al (2008) Toward a global biodiversity observing system. Science 321:1044–1045PubMedCrossRefGoogle Scholar
  4. 4.
    Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, PrincetonGoogle Scholar
  5. 5.
    Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505CrossRefGoogle Scholar
  6. 6.
    Westoby M (2006) Phylogenetic ecology at world scale, a new fusion between ecology and evolution. Ecology 87:S163–S165PubMedCrossRefGoogle Scholar
  7. 7.
    Webb CO, Donoghue MJ (2005) Phylomatic, tree assembly for applied phylogenetics. Mol Ecol Notes 5:181–183CrossRefGoogle Scholar
  8. 8.
    Webb CO (2000) Exploring the phylogenetic structure of ecological communities. An example for rain forest trees. Am Nat 156:145–155PubMedCrossRefGoogle Scholar
  9. 9.
    Cavender-Bares J, Kozak K, Fine P, Kembel S (2009) The merging of community ecology and phylogenetic biology. Ecol Letters 12:693–715CrossRefGoogle Scholar
  10. 10.
    Cavender-Bares J, Ackerly DA, Baum D, Bazzaz FA (2004) Phylogenetic overdispersion in Floridian oak communities. Am Nat 163:823–843PubMedCrossRefGoogle Scholar
  11. 11.
    Kress WJ, Erickson DL, Jones FA et al (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proc Nat Acad Sci 106:18621–18626PubMedCrossRefGoogle Scholar
  12. 12.
    Swenson NG, Enquist BJ, Thompson J, Zimmerman JK (2007) The influence of spatial and size scales on phylogenetic relatedness in tropical forest communities. Ecology 88: 1770–1780PubMedCrossRefGoogle Scholar
  13. 13.
    Wright SJ, Ackerly DD, Bongers F et al (2007) Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Ann Bot 99:1003–1015PubMedCrossRefGoogle Scholar
  14. 14.
    Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN (2007) Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes 7:544–548CrossRefGoogle Scholar
  15. 15.
    Gonzalez MA, Baraloto C, Engel J et al (2009) Identification of Amazonian trees with DNA Barcodes. PLoS One 4:e7483. doi: 10.1371/journal.pone.0007483
  16. 16.
    Bininda-Edmonds ORP (2005) transAlign, using amino acids to facilitate the multiple alignment of protein-coding DNA sequences. BMC Bioinformatics 6:156CrossRefGoogle Scholar
  17. 17.
    Maddison DR, Maddison WP (2000) MacClade 4: analysis of phylogeny and character evolution, version 4.0. Sinauer Associates, Sunderland, MAGoogle Scholar
  18. 18.
    Edgar R (2004) MUSCLE, multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797PubMedCrossRefGoogle Scholar
  19. 19.
    Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 75:758–771CrossRefGoogle Scholar
  20. 20.
    Altschul SF, Madden TL, Schäffer AA et al (2007) Gapped BLAST and PSI-BLAST, a new generation of protein database search programs. Nucleic Acids Res 1:3389–3402Google Scholar
  21. 21.
    Swofford DL (2003) PAUP* phylogenetic analysis using parsimony (* and other methods), version 4. Sinauer, Sunderland, MAGoogle Scholar
  22. 22.
    Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD Dissertation, The University of Texas at AustinGoogle Scholar
  23. 23.
    Nixon KC (1999) The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15:407–414CrossRefGoogle Scholar
  24. 24.
    Carolan JC, Hook ILI, Chase MW et al (2006) Phylogenetics of Papaver and related genera based on DNA sequences from ITS nuclear ribosomal and plastid trnL intron and trnL-F intergenic spacers. Ann Bot 98:141–155. doi: 10.1093/aob/mc1079 Google Scholar
  25. 25.
    Apg III (2009) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants, APG III. Bot J Linnean Soc 161:105–121CrossRefGoogle Scholar
  26. 26.
    Kress WJ, Erickson DL, Swenson NG et al (2010) Improvements in the application of DNA barcodes in building a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot. PLoS One 5:e15409. doi:10.1371/journal.pone. 0015409 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • W. John Kress
    • 1
    Email author
  • Ida C. Lopez
    • 1
  • David L. Erickson
    • 1
  1. 1.Department of BotanySmithsonian Institution, National Museum of Natural HistoryWashingtonUSA

Personalised recommendations