DNA Barcodes pp 395-408 | Cite as

Construction and Analysis of Phylogenetic Trees Using DNA Barcode Data

  • David L. EricksonEmail author
  • Amy C. Driskell
Part of the Methods in Molecular Biology book series (MIMB, volume 858)


The assembly of sequence data obtained from DNA barcodes into phylogenies or NJ trees has proven highly useful in estimating relatedness among species as well as providing a framework in which hypotheses regarding the evolution of traits or species distributions may be investigated. In this chapter, we outline the process by which DNA sequence data is assembled into a phylogenetically informative matrix, and then provide details on the methods to reconstruct NJ or phylogenetic trees that employ DNA barcode data, using only barcode data or combining barcodes with other data.

Key words

Nucleotide Homology Alignment Parsimony Likelihood DNA barcode Community phylogeny 


  1. 1.
    Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) Phylogenetic inference. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer Associates, BostonGoogle Scholar
  2. 2.
    Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156:145–155PubMedCrossRefGoogle Scholar
  3. 3.
    Harvey PH, Leigh Brown AJ, Maynard SJ, Nee S (2006) New uses for new phylogenies. Oxford University Press, OxfordGoogle Scholar
  4. 4.
    Smith MA, Rodriguez JJ, Whitfield JB et al (2008) Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history. DNA barcoding, morphology, and collections. Proc Nat Acad Sci USA 105:12359–12364PubMedCrossRefGoogle Scholar
  5. 5.
    Kress WJ, Erickson DL, Jones FA et al (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proc Nat Acad Sci USA 106:18621–18626PubMedCrossRefGoogle Scholar
  6. 6.
    Schreeg LA, Kress WJ, Erickson DL, Swenson NG (2010) Phylogenetic analysis of local-scale tree soil associations in a lowland moist tropical forest. PLoS One 5:e13685. doi: 10.1371/journal.pone.0013685 PubMedCrossRefGoogle Scholar
  7. 7.
    Uriarte M, Swenson N, Chazdon R et al (2010) Trait similarity, shared ancestry, and the structure of neighborhood interactions in a subtropical forest: Implications for community assembly. Ecol Lett 13:1503–1514PubMedCrossRefGoogle Scholar
  8. 8.
    Forest F, Grenyer R, Rouget M et al (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445:757–760PubMedCrossRefGoogle Scholar
  9. 9.
    Hardy OJ, Jost L (2008) Interpreting and estimating measures of community phylogenetic structuring. J Ecol 96:849–852. doi: 10.1111/j.1365-2745.2008.01423.x CrossRefGoogle Scholar
  10. 10.
    Smith S, Beaulieu JM, Donoghue MJ (2009) Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches. BMC Evol Biol 9:37. doi: 10.1186/1471-2148-9-37 PubMedCrossRefGoogle Scholar
  11. 11.
    Bininda-Emonds ORP (2005) transAlign: using amino acids to facilitate the multiple alignment of protein-coding DNA sequences. BMC Bioinformatics 6:156. doi: 10.1186/1471-2105-6-156 PubMedCrossRefGoogle Scholar
  12. 12.
    Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi: 10.1093/bioinformatics/btm404 PubMedCrossRefGoogle Scholar
  13. 13.
    Katoh K, Misawa K, Kuma K-I, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066. doi: 10.1093/nar/gkf436 PubMedCrossRefGoogle Scholar
  14. 14.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi: 10.1093/nar/gkh340 PubMedCrossRefGoogle Scholar
  15. 15.
    Meier R, Shiyang K, Vaidya G, Ng PKL (2006) DNA barcoding and taxonomy in diptera: a tale of high intraspecific variability and low identification success. Syst Biol 55:715–728. doi: 10.1080/10635150600969864 PubMedCrossRefGoogle Scholar
  16. 16.
    Maddison DR, Maddison WP (2000) MacClade 4: analysis of phylogeny and character evolution, version 4.0. Sinauer Associates, Sunderland, MAGoogle Scholar
  17. 17.
    Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (* and other methods) version 4. Sinauer Associates, Sunderland, MAGoogle Scholar
  18. 18.
    Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786CrossRefGoogle Scholar
  19. 19.
    Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. Dissertation, The University of Texas at AustinGoogle Scholar
  20. 20.
    Stamatakis A, Ott M, Ludwig T (2005) RAxML-OMP: an efficient program for phylogenetic inference on SMPs. In: Proceedings of 8th international conference on parallel computing technologies (PaCT2005). Lect Notes Comput Sci 3506288-302. Springer Verlag, BerlinGoogle Scholar
  21. 21.
    Evans J, Sheneman L, Foster JA (2006) Relaxed neighbor-joining: a fast distance-based phylogenetic tree construction method. J Mol Evol 62:785–792PubMedCrossRefGoogle Scholar
  22. 22.
    Nixon KC (1999) The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15:407–414CrossRefGoogle Scholar
  23. 23.
    Driskell AC, Ané C, Burleigh JG et al (2004) Prospects for building the tree of life from large sequence databases. Science 306:1172–1174Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of BotanySmithsonian Institution, National Museum of Natural HistoryWashingtonUSA
  2. 2.Laboratories of Analytical BiologySmithsonian Institution, NMNHSuitlandUSA

Personalised recommendations