Skip to main content

DNA Extraction, Preservation, and Amplification

  • Protocol
  • First Online:
Book cover DNA Barcodes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 858))

Abstract

The effectiveness of DNA barcoding as a routine practice in biodiversity research is strongly dependent on the quality of the source material, DNA extraction method, and selection of adequate primers in combination with optimized polymerase chain reaction (PCR) conditions. For the isolation of nucleic acids, silica-gel membrane methods are to be favored because they are easy to handle, applicable for high sample throughput, relatively inexpensive, and provide high DNA quality, quantity, and purity which are pre­requisites for successful PCR amplification and long-term storage of nucleic acids in biorepositories, such as DNA banks. In this section, standard protocols and workflow schemes for sample preparation, DNA isolation, DNA storage, PCR amplification, PCR product quality control, and PCR product cleanup are proposed and described in detail. A PCR troubleshooting and primer design section may help to solve problems that hinder successful amplification of the desired barcoding gene region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rohland N, Siedel H, Hofreiter M (2004) Nondestructive DNA extraction method for mitochondrial DNA analyses of museum specimens. Biotechniques 36:814–821

    PubMed  CAS  Google Scholar 

  2. Chakraborty A, Sakai M, Iwatsuki Y (2006) Museum fish specimens and molecular taxonomy: a comparative study on DNA extraction protocols and preservation techniques. J Appl Ichthyol 22:160–166

    Article  CAS  Google Scholar 

  3. Gilbert TMP, Moore W, Melchior L, Worobey M (2007) DNA extraction from dry museum beetles without conferring external morphological damage. PLoS ONE 2:e272

    Article  PubMed  Google Scholar 

  4. France SC, Kocher TD (1996) DNA sequencing of formalin-fixed crustaceans from archival research collections. Mol Mar Biol Biotech 5:304–313

    CAS  Google Scholar 

  5. Chase MR, Etter RJ, Rex MA, Quattro JM (1998) Extraction and amplification of mitochondrial DNA from formalin-fixed deep-sea molluscs. Biotechniques 24:243–247

    PubMed  CAS  Google Scholar 

  6. Chatigny ME (2000) The extraction of DNA from formalin-fixed, ethanol-preserved reptile and amphibian tissues. Herpetol Rev 31:86–87

    Google Scholar 

  7. Schander C, Halanych KM (2003) DNA, PCR and formalinized animal tissue – a short review and protocols. Org Divers Evol 3:195–205

    Article  Google Scholar 

  8. Coura R, Prolla JC, Meurer L, Ashton-Prolla P (2008) An alternative protocol for DNA extraction from formalin fixed and paraffin wax embedded tissue. J Clin Pathol 58:894–895

    Article  Google Scholar 

  9. Zetzsche H, Klenk H-P, Raupach MJ, Knebelsberger T, Gemeinholzer B (2008) Comparison of methods and protocols for routine DNA extraction in the DNA Bank Network. In: Gradstein R, Klatt S, Normann F, Weigelt P, Willmann R, Wilson R (eds) Systematics. Universitätsverlag Göttingen, Göttingen, p 354

    Google Scholar 

  10. Winnepenninckx B, Backeljau T, De Wachter R (1993) Extraction of high molecular weight DNA from molluscs. Trends Genet 9:409

    Google Scholar 

  11. Van Moorsel CHM, Van Nes WJ, Megens HJ (2000) A quick, simple, and inexpensive mollusc DNA extraction protocol for PCR-based techniques. Malacologia 42:203–206

    Google Scholar 

  12. Pirttilä AM, Hisikorpi M, Kämäräinen T et al (2001) DNA isolation methods for medical and aromatic plants. Plant Mol Biol Rep 19:273a–f

    Google Scholar 

  13. Nishiguchi MK, Doukakis P, Egan M et al (2002) DNA isolation procedures. In: DeSalle R, Giribet G, Wheeler WC (eds) Methods and tools in biosciences and medicine: techniques in molecular systematics and evolution. Birkhäuser Verlag, Basel, pp 249–287

    Google Scholar 

  14. Thomson JA (2002) An improved non-cryogenic transport and storage preservative facilitating DNA extraction from ‘difficult’ plants collected at remotes site. Telopea 9:755–760

    Google Scholar 

  15. Skujienė G, Soroka M (2003) A comparison of different DNA extraction methods for slugs (Mollusca: Pulmonata). Ekologija 1:12–16

    Google Scholar 

  16. Bhadury P, Austen MC, Bilton BT et al (2006) Exploitation of archived marine nematodes – a hot lysis DNA extraction protocol for molecular studies. Zool Scr 36:93–98

    Article  Google Scholar 

  17. Schill RO (2007) Comparison of different protocols for DNA preparation and PCR amplification of mitochondrial genes of tardigrades. J Limnol 66:164–170

    Article  Google Scholar 

  18. Sands CJ, Convey P, Linse K, McInnes SJ (2008) Assessing meiofaunal variation among individuals utilising morphological and molecular approaches: an example using Tardigrada. BMC Ecol 8:7

    Article  PubMed  Google Scholar 

  19. Schizas NV, Street GT, Coull BC, Chandler GT, Quattro JM (1997) An effective DNA extraction method for small metazoans. Mol Mar Biol Biotech 6:381–383

    CAS  Google Scholar 

  20. Porco D, Rougerie R, Deharveng L, Hebert P (2010) Coupling non-destructive DNA extraction and voucher retrieval for small soft-bodied Arthropods in a high-throughput context: the example of Collembola. Mol Ecol Res 10: 942–945

    Article  CAS  Google Scholar 

  21. Hill CA, Gutierrez JA (2003) A method for extraction and analysis of high quality genomic DNA from ixodid ticks. Med Vet Entomol 17:224–227

    Article  PubMed  CAS  Google Scholar 

  22. Halos L, Jamal T, Vial L et al (2004) Determination of an efficient and reliable method for DNA extraction from ticks. Vet Res 35:709–713

    Article  PubMed  CAS  Google Scholar 

  23. Mtambo J, van Bortel W, Madder M et al (2006) Comparison of preservation methods of Rhipicephalus appendiculatus (Acari: Ixodidae) for reliable DNA amplification by PCR. Exp Appl Acar 38:189–199

    Article  CAS  Google Scholar 

  24. Zhang D, Yang Y, Castlebury LA, Cerniglia CE (1996) A method for the large scale transformation efficiency fungal genomic DNA. FEMS Microbiol Lett 145:261–265

    Article  PubMed  CAS  Google Scholar 

  25. Fredricks DN, Smith C, Meier A (2005) Comparsion of six DNA extraction methods for recovery of fungal DNA assessed by quantitative PCR. J Clin Microbiol 43:5122–5128

    Article  PubMed  CAS  Google Scholar 

  26. Muller FM, Werner KE, Kasai M et al (1998) Rapid extraction of genomic DNA from medically important yeasts and filamentous fungi by high-speed cell disruption. J Clin Micobiol 36:1625–1629

    CAS  Google Scholar 

  27. Csaikl UM, Bastian H, Brettschneider R et al (1998) Comparative analysis of different DNA extraction protocols: a fast, universal maxi-preparation of high quality plant DNA for genetic evaluation and phylogenetic studies. Plant Mol Biol Report 16:69–86

    Article  CAS  Google Scholar 

  28. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  29. Drabkowa L, Kirschner J, Vlcek C (2002) Comparison of seven DNA extraction and amplification protocols in historical herbarium specimen of Juncaceae. Plant Mol Biol Report 20:161–175

    Article  Google Scholar 

  30. Shepherd M, Cross M, Stokoe RL et al (2002) High-throughput DNA extraction from forest trees. Plant Mol Biol Rep 20:425a–425j

    Article  Google Scholar 

  31. Haymes KM, Ibrahim IA, Mischke S et al (2004) Rapid isolation of DNA from chocolate and date palm tree crops. J Agric Food Chem 52:5456–5462

    Article  PubMed  CAS  Google Scholar 

  32. Ribeiro RA, Lovato MB (2007) Comparative analysis of different DNA extraction protocols in fresh and herbarium specimens of the genus Dalbergia. Gen Mol Res 6:173–187

    CAS  Google Scholar 

  33. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  PubMed  CAS  Google Scholar 

  34. Mitchell D, Willerslev E, Hansen AJ (2005) Damage and repair of ancient DNA. Mutat Res 571:265–276

    Article  PubMed  CAS  Google Scholar 

  35. Smith S, Morin PA (2005) Optimal storage conditions for highly dilute DNA samples: a role for trehalose as a preserving agent. J Forensic Sci 50:1101–1108

    Article  PubMed  CAS  Google Scholar 

  36. Murray S, Butler RC, Hardacre A, Timmerman-Vaughan G (2007) Use of quantitative real-time PCR to estimate maize endogenous DNA degradation after cooking or extrusion and in food products. J Agric Chem 55:2231–2239

    Article  CAS  Google Scholar 

  37. Anchordoquy TJ, Molina MC (2007) Preservation of DNA. Cell Preserv Technol 5:180–188

    Article  CAS  Google Scholar 

  38. Zimmermann J, Hajibabaei M, Blackburn DC et al (2008) DNA damage in preserved specimens and tissue samples: a molecular assessment. Front Zool 5:1–18

    Article  Google Scholar 

  39. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  40. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321

    Article  CAS  Google Scholar 

  41. CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci USA 106:12794–12797

    Article  Google Scholar 

  42. Seifert KA (2009) Progress towards DNA barcoding of fungi. Mol Ecol Res 9: 83–89

    Article  CAS  Google Scholar 

  43. Yoder M, De Ley IT, Wm King I et al (2006) DESS: a versatile solution for preserving morphology and extractable DNA of nematodes. Nematology 8:367–376

    Article  CAS  Google Scholar 

  44. Knölke S, Erlacher S, Hausmann A et al (2005) A procedure for combined genitalia extraction and DNA extraction in Lepidoptera. Insect Syst Evol 35:401–409

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the German Science Foundation DFG as part of the DNA Bank Network project (http://www.dnabank-network.org).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Knebelsberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Knebelsberger, T., Stöger, I. (2012). DNA Extraction, Preservation, and Amplification. In: Kress, W., Erickson, D. (eds) DNA Barcodes. Methods in Molecular Biology, vol 858. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-591-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-591-6_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-590-9

  • Online ISBN: 978-1-61779-591-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics