DNA Barcodes pp 223-252 | Cite as

DNA Barcoding Methods for Land Plants

  • Aron J. FazekasEmail author
  • Maria L. Kuzmina
  • Steven G. Newmaster
  • Peter M. Hollingsworth
Part of the Methods in Molecular Biology book series (MIMB, volume 858)


DNA barcoding in the land plants presents a number of challenges compared to DNA barcoding in many animal clades. The CO1 animal DNA barcode is not effective for plants. Plant species hybridize frequently, and there are many cases of recent speciation via mechanisms, such as polyploidy and breeding system transitions. Additionally, there are many life-history trait combinations, which combine to reduce the likelihood of a small number of markers effectively tracking plant species boundaries. Recent results, however, from the two chosen core plant DNA barcode regions rbcL and matK plus two supplementary regions trnH–psbA and internal transcribed spacer (ITS) (or ITS2) have demonstrated reasonable levels of species discrimination in both floristic and taxonomically focused studies. We describe sampling techniques, extraction protocols, and PCR methods for each of these two core and two supplementary plant DNA barcode regions, with extensive notes supporting their implementation for both low- and high-throughput facilities.

Key words

DNA barcoding Plant field collecting Plant DNA extraction PCR amplification Cycle sequencing rbcmattrnH–psbInternal transcribed spacer 



We are grateful to Michelle Hollingsworth, Alan Forrest, David Erickson, and John Kress for helpful comments on this manuscript.


  1. 1.
    Govaerts R (2001) How many species of seed plants are there? Taxon 50:1085–1090CrossRefGoogle Scholar
  2. 2.
    Thorne RF (2002) How many species of seed plants are there? Taxon 51:511–522CrossRefGoogle Scholar
  3. 3.
    Scotland RW, Wortley AH (2003) How many species of seed plants are there? Taxon 52:101–104CrossRefGoogle Scholar
  4. 4.
    Paton AJ, Brummitt N, Govaerts R, Kehan H, Hinchcliffe S, Allkin B, Lughadha EN (2008) Towards target 1 of the global strategy for plant conservation: a working list of all known plant species: progress and prospects. Taxon 57:602–611Google Scholar
  5. 5.
    Fazekas AJ, Burgess KS, Kesanakurti PR et al (2008) Multiple multilocus DNA barcodes from the plastid genome discriminate plant species equally well. PLoS One 3:e2802PubMedCrossRefGoogle Scholar
  6. 6.
    Chase MW, Salamin N, Wilkinson M et al (2005) Land plants and DNA barcodes: short-term and long-term goals. Phil Trans Lond B 360:1889–1895CrossRefGoogle Scholar
  7. 7.
    Kress WJ, Wurdack KJ, Zimmer EA et al (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 102:8369–8374PubMedCrossRefGoogle Scholar
  8. 8.
    Newmaster SG, Fazekas AJ, Ragupathy S (2006) DNA barcoding in the land plants: an evaluation of rbcL in a multigene tiered approach. Can J Bot 84:335–341CrossRefGoogle Scholar
  9. 9.
    Cowan RS, Chase MW, Kress WJ, Savolainen V (2006) 300,000 species to identify: problems, progress, and prospects in DNA barcoding of land plants. Taxon 55:611–616CrossRefGoogle Scholar
  10. 10.
    Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One 2:e508PubMedCrossRefGoogle Scholar
  11. 11.
    Chase MW, Cowan RS, Hollingsworth PM, van den Berg C, Madriñan S, Petersen G, Seberg O, Jørgsensen T, Cameron KM, Carine M, Pedersen N, Hedderson TAJ, Conrad F, Salazar GA, Richardson JE, Hollingsworth ML, Barraclough TE, Kelly L, Wilkinson M (2007) A proposal for a standardised protocol to barcode all land plants. Taxon 56:295–299Google Scholar
  12. 12.
    Newmaster SG, Fazekas AJ, Steeves RAD, Janovec J (2008) Testing candidate plant barcode regions with species of recent origin in the Myristicaceae. Mol Ecol Notes 8:480–490Google Scholar
  13. 13.
    CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci USA 106:12794–12797CrossRefGoogle Scholar
  14. 14.
    Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434PubMedCrossRefGoogle Scholar
  15. 15.
    Bailey CD, Carr TG, Harris SA, Hughes CE (2003) Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Mol Phylogenet Evol 29:435–455PubMedCrossRefGoogle Scholar
  16. 16.
    Moeller M (2000) How universal are universal rDNA primers? A cautionary note for plant systematists and phylogeneticists. Edinburgh J Bot 57:151–156CrossRefGoogle Scholar
  17. 17.
    Gonzalez MA, Baraloto C, Engel J et al (2009) Identification of Amazonian trees with DNA barcodes. PLoS One 4:e7483PubMedCrossRefGoogle Scholar
  18. 18.
    Razafimandimbison SG, Kellogg EA, Bremer B (2004) Recent origin and phylogenetic utility of divergent ITS putative pseudogenes: a case study from Naucleeae (Rubiaceae). Syst Biol 53:177–192PubMedCrossRefGoogle Scholar
  19. 19.
    Okuyama Y, Kato M (2009) Unveiling cryptic species diversity of flowering plants: successful biological species identification of Asian Mitella using nuclear ribosomal DNA sequences. BMC Evol Biol 9:105PubMedCrossRefGoogle Scholar
  20. 20.
    Chen S, Yao H, Han J et al (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 5:e8613PubMedCrossRefGoogle Scholar
  21. 21.
    Taberlet P, Coissac E, Pompanon F et al (2007) Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res 35:e14PubMedCrossRefGoogle Scholar
  22. 22.
    Fazekas AJ, Kesanakurti PR, Burgess KS et al (2009) Are plant species inherently harder to discriminate than animal species using DNA barcoding markers? Mol Ecol Res 9:130–139CrossRefGoogle Scholar
  23. 23.
    Hollingsworth PM, Graham SW, Little DP (2011) Choosing and using a plant DNA barcode. PLoS ONE 6(5):e19254. doi: 10.1371/journal.pone.0019254 PubMedCrossRefGoogle Scholar
  24. 24.
    Kress WJ, Erickson DL, Jones FA et al (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proc Natl Acad Sci USA 106:18621–18626PubMedCrossRefGoogle Scholar
  25. 25.
    Burgess KS, Fazekas AJ, Kesanakurti PR et al (2011) Discriminating plant species in a local temperate flora using the rbcL  +  matK DNA barcode. Methods Ecol Evol 2:333–340CrossRefGoogle Scholar
  26. 26.
    Ivanova NV, Fazekas AJ, Hebert PDN (2008) Semi-automated, membrane-based protocol for DNA isolation from plants. Plant Mol Biol Rep 26:186–198CrossRefGoogle Scholar
  27. 27.
    Colpaert N, Cavers S, Bandou E et al (2005) Sampling tissue for DNA analysis of trees: trunk cambium as an alternative to canopy leaves. Silvae Genet 54:265–269Google Scholar
  28. 28.
    Tate JA, Simpson BB (2003) Paraphyly of Tarasa (Malvaceae) and diverse origins of the polyploid species. Syst Bot 28:723–737Google Scholar
  29. 29.
    Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution and biogeography of Paeonia (Paeoniaceae). Am J Bot 84:1120–1136PubMedCrossRefGoogle Scholar
  30. 30.
    Hamilton MB (1999) Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Mol Ecol 8:513–525CrossRefGoogle Scholar
  31. 31.
    Cox CJ, Goffinet B, Shaw AJ, Boles SB (2004) Phylogenetic relationships among mosses based on heterogeneous Bayesian analysis of multiple genes from multiple genomic compartments. Syst Bot 29:234–250CrossRefGoogle Scholar
  32. 32.
    Fazekas AJ, Steeves R, Newmaster SG (2010) Improving sequencing quality from PCR products containing long mononucleotide repeats. Biotechniques 48:277–285PubMedCrossRefGoogle Scholar
  33. 33.
    Dunning LT, Savolainen V (2010) Broad-scale amplification of matK for DNA barcoding plants, a technical note. Bot J Linn Soc 164:1–9CrossRefGoogle Scholar
  34. 34.
    Soltis PS, Soltis DE, Smiley CJ (1992) An rbcL sequence from a Miocene Taxodium (bald cypress). Proc Nat Acad Sci USA 89:449–451PubMedCrossRefGoogle Scholar
  35. 35.
    Levin RA, Wagner WL, Hoch PC, Nepokroeff M, Pires JC, Zimmer EA, Sytsma KJ (2003) Family-level relationships of Onagraceae based on chloroplast rbcL and ndhF data. Am J Bot 90:107–115PubMedCrossRefGoogle Scholar
  36. 36.
    Fofana B, Harvengt L, Jardin P, Baudoin JP (1997) New primers for the polymerase chain amplification of cpDNA intergenic spacers in Phaseolus phylogeny. Belg J Bot 129:118–122Google Scholar
  37. 37.
    Cuenoud P, Savolainen V, Chatrou LW, Powell M, Grayer RJ, Chase MW (2002) Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. Am J Bot 89:132–144PubMedCrossRefGoogle Scholar
  38. 38.
    White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322Google Scholar
  39. 39.
    Sun Y, Skinner DZ, Liang GH, Hulbert SH (1994) Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theor Appl Gen 89:26–32CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Aron J. Fazekas
    • 1
    Email author
  • Maria L. Kuzmina
    • 2
  • Steven G. Newmaster
    • 1
  • Peter M. Hollingsworth
    • 3
  1. 1.Department of Integrative BiologyUniversity of GuelphGuelphCanada
  2. 2.Biodiversity Institute of Ontario & Integrative BiologyUniversity of GuelphGuelphCanada
  3. 3.Royal Botanic Garden EdinburghEdinburghUK

Personalised recommendations