Skip to main content

A Practical Introduction to Molecular Dynamics Simulations: Applications to Homology Modeling

  • Protocol
  • First Online:
Book cover Homology Modeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 857))

Abstract

In this chapter, practical concepts and guidelines are provided for the use of molecular dynamics (MD) simulation for the refinement of homology models. First, an overview of the history and a theoretical background of MD are given. Literature examples of successful MD refinement of homology models are reviewed before selecting the Cytochrome P450 2J2 structure as a case study. We describe the setup of a system for classical MD simulation in a detailed stepwise fashion and how to perform the refinement described in the publication of Li et al. (Proteins 71:938–949, 2008). This tutorial is based on version 11 of the AMBER Molecular Dynamics software package (http://ambermd.org/). However, the approach discussed is equally applicable to any condensed phase MD simulation environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Becker, O. M. (2001) Computational biochemistry and biophysics CRC, New York.

    Book  Google Scholar 

  2. Cramer, C. J. (2004) Essentials of computational chemistry: theories and models John Wiley & Sons Inc, New York.

    Google Scholar 

  3. McCammon, J. A., Gelin, B. R., and Karplus, M. (1977) Dynamics of folded proteins, Nature 267, 585–590.

    Article  PubMed  CAS  Google Scholar 

  4. Duan, Y. and Kollman, P. (1998) Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution, Science 282, 740–744.

    Article  PubMed  CAS  Google Scholar 

  5. Yeh, I. C. and Hummer, G. (2002) Peptide loop-closure kinetics from microsecond molecular dynamics simulations in explicit solvent, J. Am. Chem. Soc 124, 6563–6568.

    Article  PubMed  CAS  Google Scholar 

  6. Klepeis, J. L., Lindorff-Larsen, K., Dror, R. O., and Shaw, D. E. (2009) Long-timescale molecular dynamics simulations of protein structure and function, Current opinion in structural biology 19, 120–127.

    Article  PubMed  CAS  Google Scholar 

  7. Sanbonmatsu, K. Y., Joseph, S., and Tung, C. S. (2005) Simulating movement of tRNA into the ribosome during decoding, Proceedings of the National Academy of Sciences of the United States of America 102, 15854–15859.

    Article  PubMed  CAS  Google Scholar 

  8. Freddolino, P. L., Arkhipov, A. S., Larson, S. B., McPherson, A., and Schulten, K. (2006) Molecular dynamics simulations of the complete satellite tobacco mosaic virus, Structure 14, 437–449.

    Article  PubMed  CAS  Google Scholar 

  9. Simmerling, C., Strockbine, B., and Roitberg, A. E. (2002) All-atom structure prediction and folding simulations of a stable protein, J. Am. Chem. Soc 124, 11258–11259.

    Article  PubMed  CAS  Google Scholar 

  10. Lei, H., Wu, C., Liu, H., and Duan, Y. (2007) Folding free-energy landscape of villin headpiece subdomain from molecular dynamics simulations, Proceedings of the National Academy of Sciences 104, 4925–4930.

    Article  CAS  Google Scholar 

  11. He, Y., Chen, C., and Xiao, Y. (2009) United-Residue (UNRES) Langevin Dynamics Simulations of trpzip2 Folding, Journal of Computational Biology 16, 1719–1730.

    Article  PubMed  CAS  Google Scholar 

  12. Larsson, P., Wallner, B., Lindahl, E., and Elofsson, A. (2008) Using multiple templates to improve quality of homology models in automated homology modeling, Protein Science 17, 990–1002.

    Article  PubMed  CAS  Google Scholar 

  13. Krieger, E., Joo, K., Lee, J., Lee, J., Raman, S., Thompson, J., Tyka, M., Baker, D., and Karplus, K. (2009) Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8, Proteins: Structure, Function, and Bioinformatics 77, 114–122.

    Article  CAS  Google Scholar 

  14. Xiang, Z. (2006) Advances in homology protein structure modeling, Current protein & peptide science 7, 217–227.

    Article  CAS  Google Scholar 

  15. Stumpff-Kane, A. W., Maksimiak, K., Lee, M. S., and Feig, M. (2008) Sampling of near-native protein conformations during protein structure refinement using a coarse-grained model, normal modes, and molecular dynamics simulations, Proteins: Structure, Function, and Bioinformatics 70, 1345–1356.

    Article  CAS  Google Scholar 

  16. Xu. D, Williamson. M J, Walker. R C. (2010) Advancements in Molecular Dynamics Simulations of Biomolecules on Graphical Processing Units, in Ann.Rep.Comp.Chem 6, pp 2–19.

    Article  Google Scholar 

  17. Koehler, M., Ruckenbauer, M., Janciak, I., Benkner, S., Lischka, H., and Gansterer, W. (2010) Supporting Molecular Modeling Workflows within a Grid Services Cloud, Computational Science and Its Applications, ICCSA 2010 13–28.

    Google Scholar 

  18. Krieger, E., Joo, K., Lee, J., Lee, J., Raman, S., Thompson, J., Tyka, M., Baker, D., and Karplus, K. (2009) Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8, Proteins: Structure, Function, and Bioinformatics 77, 114–122.

    Article  CAS  Google Scholar 

  19. Kryshtafovych, A., Fidelis, K., and Moult, J. (2009) CASP PROGRESS REPORTS, Proteins 77, 217–228.

    Article  PubMed  CAS  Google Scholar 

  20. Fan, H. and Mark, A. E. (2004) Refinement of homology based protein structures by molecular dynamics simulation techniques, Protein Science 13, 211–220.

    Article  PubMed  CAS  Google Scholar 

  21. Berendsen, H. J. C., van der Spoel, D., and Van Drunen, R. (1995) GROMACS: a message-passing parallel molecular dynamics implementation, Computer Physics Communications 91, 43–56.

    Article  CAS  Google Scholar 

  22. Lindahl, E., Hess, B., and van der Spoel, D. (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis, Journal of Molecular Modeling 7, 306–317.

    CAS  Google Scholar 

  23. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., and Hermans, J. (1981) Interaction models for water in relation to protein hydration, Intermolecular forces 331–342.

    Google Scholar 

  24. Im, W., Lee, M. S., and Brooks III, C. L. (2003) Generalized born model with a simple smoothing function, Journal of Computational Chemistry 24, 1691–1702.

    Article  PubMed  CAS  Google Scholar 

  25. Chopra, G., Summa, C. M., and Levitt, M. (2008) Solvent dramatically affects protein structure refinement, Proceedings of the National Academy of Sciences 105, 20239–20244.

    Article  CAS  Google Scholar 

  26. Chen, J. and Brooks III, C. L. (2007) Can molecular dynamics simulations provide high resolution refinement of protein structure?, Proteins: Structure, Function, and Bioinformatics 67, 922–930.

    Article  CAS  Google Scholar 

  27. Anishkin, A., Milac, A. L., and Guy, H. R. (2010) Symmetry-restrained molecular dynamics simulations improve homology models of potassium channels, Proteins: Structure, Function, and Bioinformatics 78, 932–949.

    Article  CAS  Google Scholar 

  28. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L., and Schulten, K. (2005) Scalable molecular dynamics with NAMD, Journal of Computational Chemistry 26, 1781–1802.

    Article  PubMed  CAS  Google Scholar 

  29. Wroblewska, L. and Skolnick, J. (2007) Can a physics based, all atom potential find a protein’s native structure among misfolded structures? I. Large scale AMBER benchmarking, Journal of Computational Chemistry 28, 2059–2066.

    Article  PubMed  CAS  Google Scholar 

  30. Krieger, E., Koraimann, G., and Vriend, G. (2002) Increasing the precision of comparative models with YASARA NOVA - a self parameterizing force field, Proteins: Structure, Function, and Bioinformatics 47, 393–402.

    Article  CAS  Google Scholar 

  31. Cavasotto, C. N. and Phatak, S. S. (2009) Homology modeling in drug discovery: current trends and applications, Drug discovery today 14, 676–683.

    Article  PubMed  CAS  Google Scholar 

  32. Klepeis, J. L., Lindorff-Larsen, K., Dror, R. O., and Shaw, D. E. (2009) Long-timescale molecular dynamics simulations of protein structure and function, Current opinion in structural biology 19, 120–127.

    Article  PubMed  CAS  Google Scholar 

  33. Floquet, N., M’Kadmi, C., Perahia, D., Gagne, D., Berge,⋅G., Marie, J., Baneres, J. L., Galleyrand, J. C., Fehrentz, J. A., and Martinez, J. (2010) Activation of the ghrelin ­receptor is described by a privileged collective motion: a model for constitutive and agonist-induced activation of a sub-class A G-protein coupled receptor (GPCR), Journal of molecular biology 395, 769–784.

    Article  PubMed  CAS  Google Scholar 

  34. Zhang, Y., Sham, Y. Y., Rajamani, R., Gao, J., and Portoghese, P. S. (2005) Homology modeling and molecular dynamics simulations of the mu opioid receptor in a membraneûaqueous system, Chembiochem 6, 853–859.

    Article  PubMed  CAS  Google Scholar 

  35. Aarts, E. H. L. and Van Laarhoven, P. J. M. (1985) Statistical cooling: A general approach to combinatorial optimization problems, Philips J. Res. 40, 193–226.

    Google Scholar 

  36. Meng, X. Y., Zheng, Q. C., and Zhang, H. X. (2009) A comparative analysis of binding sites between mouse CYP2C38 and CYP2C39 based on homology modeling, molecular dynamics simulation and docking studies, Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics 1794, 1066–1072.

    Google Scholar 

  37. Speranskiy, K., Cascio, M., and Kurnikova, M. (2007) Homology modeling and molecular dynamics simulations of the glycine receptor ligand binding domain, Proteins: Structure, Function, and Bioinformatics 67, 950–960.

    Article  CAS  Google Scholar 

  38. Sugita, Y. and Okamoto, Y. (1999) Replica-exchange molecular dynamics method for protein folding, Chemical Physics Letters 314, 141–151.

    Article  CAS  Google Scholar 

  39. Zhu, J., Fan, H., Periole, X., Honig, B., and Mark, A. E. (2008) Refining homology models by combining replica exchange molecular dynamics and statistical potentials, Proteins: Structure, Function, and Bioinformatics 72, 1171–1188.

    Article  CAS  Google Scholar 

  40. Nguyen, T. L., Gussio, R., Smith, J. A., Lannigan, D. A., Hecht, S. M., Scudiero, D. A., Shoemaker, R. H., and Zaharevitz, D. W. (2006) Homology model of RSK2 N-terminal kinase domain, structure-based identification of novel RSK2 inhibitors, and preliminary common pharmacophore, Bioorganic & medicinal chemistry 14, 6097–6105.

    Article  CAS  Google Scholar 

  41. Case, D. A., Darden, T., Cheatham III, T. E., Simmerling, C., Wang, J., Duke, R. E., Luo, R., Walker, R. C., Zhang, W., Merz, K. M., B.Roberts, B.Wang, S.Hayik, A.Roitberg, G.Seabra, I.Kolossváry, K.F.Wong, F.Paesani, , J. V., J.Liu, X.Wu, , S. R. B., T.Steinbrecher, H.Gohlke, Q.Cai, X.Ye, J.Wang, M.-J.Hsieh, G.Cui, D.R.Roe, D.H.Mathews, , M. G. S., C.Sagui, V.Babin, T.Luchko, S.Gusarov, and , A. K. (2010) Amber 11, University of California (San Francisco).

    Google Scholar 

  42. Brooks, B. R., Bruccoleri, R. E., and Olafson, B. D. (1983) CHARMM: A program for macromolecular energy, minimization, and dynamics calculations, Journal of Computational Chemistry 4, 187–217.

    Article  CAS  Google Scholar 

  43. Plimpton, S. (1995) Fast parallel algorithms for short-range molecular dynamics, Journal of Computational Physics 117, 1–19.

    Article  CAS  Google Scholar 

  44. Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., and Kollman, P. A. (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules, Journal of the American Chemical Society 117, 5179–5197.

    Article  CAS  Google Scholar 

  45. Wickstrom, L., Okur, A., and Simmerling, C. (2009) Evaluating the performance of the ff99SB force field based on NMR scalar coupling data, Biophysical journal 97, 853–856.

    Article  PubMed  CAS  Google Scholar 

  46. Holtje, H. D., Sippl, W., Rognan, D., and Folkers G. (2008) Molecular modeling: basic principles and applications WILEY-VCH, Weinheim.

    Google Scholar 

  47. Verlet, L. (1968) Computer experiments on classical fluids. ii. equilibrium correlation functions, Phys. Rev 165, 201–214.

    Article  Google Scholar 

  48. Honeycutt, R. W. (1970) The potential calculation and some applications, Methods in Computational Physics 9, 136–211.

    Google Scholar 

  49. Grenander, U. (1959) Probability and statistics: the Harald Cramer volume Almqvist & Wiksell.

    Google Scholar 

  50. Ryckaert, J. P., Ciccotti, G., and Berendsen, H. J. C. (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, J. comput. Phys 23, 327–341.

    Article  CAS  Google Scholar 

  51. Wyss, P. C., Gerber, P., Hartman, P. G., Hubschwerlen, C., Locher, H., Marty, H. P., and Stahl, M. (2003) Novel dihydrofolate reductase inhibitors. Structure-based versus diversity-based library design and high-throughput synthesis and screening, J. Med. Chem 46, 2304–2312.

    Article  PubMed  CAS  Google Scholar 

  52. Bortolato, A., Mobarec, J. C., Provasi, D., and Filizola, M. (2009) Progress in elucidating the structural and dynamic character of G Protein-Coupled Receptor oligomers for use in drug discovery, Current pharmaceutical design 15, 4017–4025.

    Article  PubMed  CAS  Google Scholar 

  53. Costanzi, S., Siegel, J., Tikhonova, I. G., and Jacobson, K. A. (2009) Rhodopsin and the others: a historical perspective on structural studies of G protein-coupled receptors, Current pharmaceutical design 15, 3994–4002.

    Article  PubMed  CAS  Google Scholar 

  54. Mobarec, J. C. and Filizola, M. (2008) Advances in the development and application of computational methodologies for structural modeling of G-protein-coupled receptors, Expert Opin. Drug Discov. 3, 343–355.

    Article  PubMed  CAS  Google Scholar 

  55. Valadez, E., Ulloa-Aguirre, A., and Pin eiro, A. (2008) Modeling and molecular dynamics simulation of the human gonadotropin-releasing hormone receptor in a lipid bilayer, The Journal of Physical Chemistry B 112, 10704–10713.

    Article  Google Scholar 

  56. Yarnitzky, T., Levit, A., and Niv, M. Y. (2010) Homology modeling of G-protein-coupled receptors with X-ray structures on the rise, Current opinion in drug discovery & development 13, 317–325.

    CAS  Google Scholar 

  57. Nebert, D. W. and Russell, D. W. (2002) Clinical importance of the cytochromes P450, The Lancet 360, 1155–1162.

    Article  CAS  Google Scholar 

  58. Sali, A., Potterton, L., Yuan, F., van Vlijmen, H., and Karplus, M. (1995) Evaluation of comparative protein modeling by MODELLER, Proteins: Structure, Function, and Bioinformatics 23, 318–326.

    Article  CAS  Google Scholar 

  59. Dauber-Osguthrop, P., Roberts, V. A., Osguthorpe, D. J., Wolff, J., Genest, M., and Hagler, A. T. (1988) Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase trimethoprim, a drug receptor system, Proteins: Structure, Function, and Bioinformatics 4, 31–47.

    Article  Google Scholar 

  60. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., and Klein, M. L. (1983) Comparison of simple potential functions for simulating liquid water, The Journal of chemical physics 79, 926–935.

    Article  CAS  Google Scholar 

  61. Meng, X. Y., Zheng, Q. C., and Zhang, H. X. (2009) A comparative analysis of binding sites between mouse CYP2C38 and CYP2C39 based on homology modeling, molecular dynamics simulation and docking studies, Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics 1794, 1066–1072.

    Google Scholar 

  62. Venkatachalam, C. M., Jiang, X., Oldfield, T., and Waldman, M. (2003) LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites, Journal of Molecular Graphics and Modelling 21, 289–307.

    Article  PubMed  CAS  Google Scholar 

  63. Gajendrarao, P., Krishnamoorthy, N., Sakkiah, S., Lazar, P., and Lee, K. W. (2010) Molecular modeling study on orphan human protein CYP4A22 for identification of potential ligand binding site, Journal of Molecular Graphics and Modelling 28, 524–532.

    Article  PubMed  CAS  Google Scholar 

  64. Houslay, M. D., Schafer, P., and Zhang, K. Y. J. (2005) Keynote review: phosphodiesterase-4 as a therapeutic target, Drug discovery today 10, 1503–1519.

    Article  PubMed  CAS  Google Scholar 

  65. Pandit, J., Forman, M. D., Fennell, K. F., Dillman, K. S., and Menniti, F. S. (2009) Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct, Proceedings of the National Academy of Sciences 106, 18225–18230.

    Article  CAS  Google Scholar 

  66. Heller, H., Schaefer, M., and Schulten, K. (1993) Molecular dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid crystal phase, The Journal of Physical Chemistry 97, 8343–8360.

    Article  CAS  Google Scholar 

  67. Hamza, A., AbdulHameed, M. D. M., and Zhan, C. G. (2008) Understanding microscopic binding of human microsomal prostaglandin E synthase-1 with substrates and inhibitors by molecular modeling and dynamics simulation, The Journal of Physical Chemistry B 112, 7320–7329.

    Article  PubMed  CAS  Google Scholar 

  68. Hamza, A. and Zhan, C. G. (2009) Determination of the Structure of Human Phosphodiesterase-2 in a Bound State and Its Binding with Inhibitors by Molecular Modeling, Docking, and Dynamics Simulation, The Journal of Physical Chemistry B 113, 2896–2908.

    Article  PubMed  CAS  Google Scholar 

  69. Singh, N., Avery, M. A., and McCurdy, C. R. (2007) Toward Mycobacterium tuberculosis DXR inhibitor design: homology modeling and molecular dynamics simulations, Journal of Computer-Aided Molecular Design 21, 511–522.

    Article  PubMed  CAS  Google Scholar 

  70. Guex, N. and Peitsch, M. C. (1997) SWISS MODEL and the Swiss Pdb Viewer: an environment for comparative protein modeling, Electrophoresis 18, 2714–2723.

    Article  PubMed  CAS  Google Scholar 

  71. Kiefer, F., Arnold, K., Kunzli, M., Bordoli, L., and Schwede, T. (2009) The SWISS-MODEL Repository and associated resources, Nucleic acids research 37, D387–D392.

    Article  PubMed  CAS  Google Scholar 

  72. Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W., and Taylor, R. D. (2003) Improved proteinûligand docking using GOLD, Proteins: Structure, Function, and Bioinformatics 52, 609–623.

    Article  CAS  Google Scholar 

  73. Daga, P. R., Duan, J., and Doerksen, R. J. (2010) Computational model of hepatitis B virus DNA polymerase: Molecular dynamics and docking to understand resistant mutations, Protein Science 19, 796–807.

    Article  PubMed  CAS  Google Scholar 

  74. Serrano, M. L., Perez, H. A., and Medina, J. D. (2006) Structure of C-terminal fragment of merozoite surface protein-1 from Plasmodium vivax determined by homology modeling and molecular dynamics refinement, Bioorganic & medicinal chemistry 14, 8359–8365.

    Article  CAS  Google Scholar 

  75. Li, W., Tang, Y., Liu, H., Cheng, J., Zhu, W., and Jiang, H. (2008) Probing ligand binding modes of human cytochrome P450 2J2 by homology modeling, molecular dynamics simulation, and flexible molecular docking, Proteins: Structure, Function, and Bioinformatics 71, 938–949.

    Article  CAS  Google Scholar 

  76. Humphrey, W., Dalke, A., and Schulten, K. (1996) VMD: visual molecular dynamics, Journal of molecular graphics 14, 33–38.

    Article  PubMed  CAS  Google Scholar 

  77. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. (2004) UCSF Chimera-a visualization system for exploratory research and analysis, Journal of Computational Chemistry 25, 1605–1612.

    Article  PubMed  CAS  Google Scholar 

  78. Izaguirre, J. A., Catarello, D. P., Wozniak, J. M., and Skeel, R. D. (2001) Langevin stabilization of molecular dynamics, The Journal of chemical physics 114, 2090–2099.

    Article  CAS  Google Scholar 

  79. Still, W. C., Tempczyk, A., Hawley, R. C., and Hendrickson, T. (1990) Semianalytical treatment of solvation for molecular mechanics and dynamics, Journal of the American Chemical Society 112, 6127–6129.

    Article  CAS  Google Scholar 

  80. Darden, T., York, D., and Pedersen, L. (1993) Particle mesh Ewald: An N log (N) method for Ewald sums in large systems, The Journal of chemical physics 98, 10089–10092.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grant 09-LR-06-117792-WALR from the University of California Lab Fees program (RCW) and grant NSF1047875 from the US National Science Foundation (RCW). We additionally thank the NSF TeraGrid (award TG-MCB090110) for providing supercomputer time in support of this work. We would also like to thank Weihua Li and Yun Tang of the School of Pharmacy, East China University of Science and Technology for their fast response and willingness to share with us their P450 2J2 homology structure. We thank Pr. Pierre-Alain Carrupt (School of Pharmaceutical Sciences, University of Geneva, University of Lausanne) for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross C. Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media,LLC

About this protocol

Cite this protocol

Nurisso, A., Daina, A., Walker, R.C. (2011). A Practical Introduction to Molecular Dynamics Simulations: Applications to Homology Modeling. In: Orry, A., Abagyan, R. (eds) Homology Modeling. Methods in Molecular Biology, vol 857. Humana Press. https://doi.org/10.1007/978-1-61779-588-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-588-6_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-587-9

  • Online ISBN: 978-1-61779-588-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics