Skip to main content

Automated Protein Structure Modeling with SWISS-MODEL Workspace and the Protein Model Portal

  • Protocol
  • First Online:
Homology Modeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 857))

Abstract

Comparative protein structure modeling is a computational approach to build three-dimensional structural models for proteins using experimental structures of related protein family members as templates. Regular blind assessments of modeling accuracy have demonstrated that comparative protein structure modeling is currently the most reliable technique to model protein structures. Homology models are often sufficiently accurate to substitute for experimental structures in a wide variety of applications. Since the usefulness of a model for specific application is determined by its accuracy, model quality estimation is an essential component of protein structure prediction. Comparative protein modeling has become a routine approach in many areas of life science research since fully automated modeling systems allow also nonexperts to build reliable models. In this chapter, we describe practical approaches for automated protein structure modeling with SWISS-MODEL Workspace and the Protein Model Portal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwede, T., A. Sali, N. Eswar, and M.C. Peitsch, Protein Structure Modeling., in Computational Structural Biology, T. Schwede and M.C. Peitsch, Editors. 2008, World Scientific Singapore. p. 3–35.

    Google Scholar 

  2. Baker, D. and A. Sali. (2001) Protein structure prediction and structural genomics. Science. 294, 93–96.

    Article  PubMed  CAS  Google Scholar 

  3. Sali, A. and T.L. Blundell. (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol. 234, 779–815.

    Article  PubMed  CAS  Google Scholar 

  4. Sutcliffe, M.J., I. Haneef, D. Carney, and T.L. Blundell. (1987) Knowledge based modeling of homologous proteins, Part I: Three-dimensional frameworks derived from the simultaneous superposition of multiple structures. Protein Eng. 1, 377–384.

    Google Scholar 

  5. Peitsch, M.C. (1996) ProMod and Swiss-Model: Internet-based tools for automated comparative protein modeling. Biochem Soc Trans. 24, 274–279.

    PubMed  CAS  Google Scholar 

  6. Fiser, A. Template-based protein structure modeling. Methods Mol Biol. 673, 73–94.

    Google Scholar 

  7. Moult, J. (2005) A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr Opin Struct Biol. 15, 285–289.

    Article  PubMed  CAS  Google Scholar 

  8. Arinaminpathy, Y., E. Khurana, D.M. Engelman, and M.B. Gerstein. (2009) Computational analysis of membrane proteins: the largest class of drug targets. Drug Discov Today. 14, 1130–1135.

    Article  PubMed  CAS  Google Scholar 

  9. Schwede, T., A. Sali, B. Honig, M. Levitt, et al. (2009) Outcome of a workshop on applications of protein models in biomedical research. Structure. 17, 151–159.

    Article  PubMed  CAS  Google Scholar 

  10. Peitsch, M.C. (2002) About the use of protein models. Bioinformatics. 18, 934–938.

    Article  PubMed  CAS  Google Scholar 

  11. Tramontano, A., The biological applications of protein models., in Computational Structural Biology, T. Schwede and M.C. Peitsch, Editors. 2008, World Scientific Publishing. p. 111–127.

    Google Scholar 

  12. Junne, T., T. Schwede, V. Goder, and M. Spiess. (2006) The plug domain of yeast Sec61p is important for efficient protein translocation, but is not essential for cell viability. Mol Biol Cell. 17, 4063–4068.

    Article  PubMed  CAS  Google Scholar 

  13. Grant, M.A. (2009) Protein structure prediction in structure-based ligand design and virtual screening. Comb Chem High Throughput Screen. 12, 940–960.

    Article  PubMed  CAS  Google Scholar 

  14. Takeda-Shitaka, M., D. Takaya, C. Chiba, H. Tanaka, et al. (2004) Protein structure prediction in structure based drug design. Curr Med Chem. 11, 551–558.

    Article  PubMed  CAS  Google Scholar 

  15. Das, R. and D. Baker. (2009) Prospects for de novo phasing with de novo protein models. Acta Crystallogr D Biol Crystallogr. 65, 169–175.

    Article  PubMed  Google Scholar 

  16. Giorgetti, A., D. Raimondo, A.E. Miele, and A. Tramontano. (2005) Evaluating the usefulness of protein structure models for molecular replacement. Bioinformatics. 21 Suppl 2, ii72–76.

    Google Scholar 

  17. Topf, M., M.L. Baker, M.A. Marti-Renom, W. Chiu, et al. (2006) Refinement of protein structures by iterative comparative modeling and CryoEM density fitting. J Mol Biol. 357, 1655–1668.

    Article  PubMed  CAS  Google Scholar 

  18. Topf, M. and A. Sali. (2005) Combining electron microscopy and comparative protein structure modeling. Curr Opin Struct Biol. 15, 578–585.

    Article  PubMed  CAS  Google Scholar 

  19. Zhu, J., L. Cheng, Q. Fang, Z.H. Zhou, et al. Building and refining protein models within cryo-electron microscopy density maps based on homology modeling and multiscale structure refinement. J Mol Biol. 397, 835–851.

    Google Scholar 

  20. Guex, N., M.C. Peitsch, and T. Schwede. (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis. 30 Suppl 1, S162–173.

    Article  PubMed  Google Scholar 

  21. Brazas, M.D., J.T. Yamada, and B.F. Ouellette. (2010) Providing web servers and training in Bioinformatics: 2010 update on the Bioinformatics Links Directory. Nucleic Acids Res. 38 Suppl, W3–6.

    Article  PubMed  CAS  Google Scholar 

  22. Battey, J.N., J. Kopp, L. Bordoli, R.J. Read, et al. (2007) Automated server predictions in CASP7. Proteins. 69, 68–82.

    Article  PubMed  CAS  Google Scholar 

  23. Pieper, U., B.M. Webb, D.T. Barkan, D. Schneidman-Duhovny, et al. (2011) ModBase, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res. 39, D465–474.

    Article  PubMed  Google Scholar 

  24. Chivian, D. and D. Baker. (2006) Homology modeling using parametric alignment ensemble generation with consensus and energy-based model selection. Nucleic Acids Res. 34, e112.

    Article  PubMed  Google Scholar 

  25. Hildebrand, A., M. Remmert, A. Biegert, and J. Soding. (2009) Fast and accurate automatic structure prediction with HHpred. Proteins. 77 Suppl 9, 128–132.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang, Y. (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 9, 40.

    Article  PubMed  Google Scholar 

  27. Larsson, P., M.J. Skwark, B. Wallner, and A. Elofsson. Improved predictions by Pcons.net using multiple templates. Bioinformatics. 27, 426–427.

    Google Scholar 

  28. Kelley, L.A. and M.J. Sternberg. (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc. 4, 363–371.

    Article  PubMed  CAS  Google Scholar 

  29. Fernandez-Fuentes, N., C.J. Madrid-Aliste, B.K. Rai, J.E. Fajardo, et al. (2007) M4T: a comparative protein structure modeling server. Nucleic Acids Res. 35, W363–368.

    Article  PubMed  Google Scholar 

  30. Schneidman-Duhovny, D., M. Hammel, and A. Sali. (2011) Macromolecular docking restrained by a small angle X-ray scattering profile.J Struct Biol 173, 461–471.

    Google Scholar 

  31. Vroling, B., M. Sanders, C. Baakman, A. Borrmann, et al. GPCRDB: information system for G protein-coupled receptors. Nucleic Acids Res. 39, D309–319.

    Google Scholar 

  32. Zhang, Y., M.E. Devries, and J. Skolnick. (2006) Structure modeling of all identified G protein-coupled receptors in the human genome. PLoS Comput Biol. 2, e13.

    Article  PubMed  Google Scholar 

  33. Marcatili, P., A. Rosi, and A. Tramontano. (2008) PIGS: automatic prediction of antibody structures. Bioinformatics. 24, 1953–1954.

    Article  PubMed  CAS  Google Scholar 

  34. Sivasubramanian, A., A. Sircar, S. Chaudhury, and J.J. Gray. (2009) Toward high-resolution homology modeling of antibody Fv regions and application to antibody-antigen docking. Proteins. 74, 497–514.

    Article  PubMed  CAS  Google Scholar 

  35. Schwede, T., A. Diemand, N. Guex, and M.C. Peitsch. (2000) Protein structure computing in the genomic era. Res Microbiol. 151, 107–112.

    Article  PubMed  CAS  Google Scholar 

  36. Kiefer, F., K. Arnold, M. Kunzli, L. Bordoli, et al. (2009) The SWISS-MODEL Repository and associated resources. Nucleic Acids Res. 37, D387–392.

    Article  PubMed  CAS  Google Scholar 

  37. Pieper, U., B.M. Webb, D.T. Barkan, D. Schneidman-Duhovny, et al. (2011) ModBase, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res 39, D465–D474.

    Google Scholar 

  38. Koh, I.Y., V.A. Eyrich, M.A. Marti-Renom, D. Przybylski, et al. (2003) EVA: Evaluation of protein structure prediction servers. Nucleic Acids Res. 31, 3311–3315.

    Article  PubMed  CAS  Google Scholar 

  39. Chothia, C. and A.M. Lesk. (1986) The relation between the divergence of sequence and structure in proteins. Embo J. 5, 823–826.

    PubMed  CAS  Google Scholar 

  40. Peng, J. and J. Xu. (2010) Low-homology protein threading. Bioinformatics. 26, i294–300.

    Article  PubMed  CAS  Google Scholar 

  41. Benkert, P., S.C. Tosatto, and T. Schwede. (2009) Global and local model quality estimation at CASP8 using the scoring functions QMEAN and QMEANclust. Proteins. 77 Suppl 9, 173–180.

    Article  PubMed  CAS  Google Scholar 

  42. McGuffin, L.J. and D.B. Roche. (2010) Rapid model quality assessment for protein structure predictions using the comparison of multiple models without structural alignments. Bioinformatics. 26, 182–188.

    Article  PubMed  CAS  Google Scholar 

  43. Eramian, D., N. Eswar, M.Y. Shen, and A. Sali. (2008) How well can the accuracy of comparative protein structure models be predicted? Protein Sci. 17, 1881–1893.

    Article  PubMed  CAS  Google Scholar 

  44. Melo, F. and E. Feytmans, Scoring Functions for Protein Structure Prediction. Computational Structural Biology, ed. T. Schwede and M.C. Peitsch. 2008: World Scientific Publishing.

    Google Scholar 

  45. Zhou, H. and Y. Zhou. (2002) Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci. 11, 2714–2726.

    Article  PubMed  CAS  Google Scholar 

  46. Guex, N. and M.C. Peitsch. (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 18, 2714–2723.

    Article  PubMed  CAS  Google Scholar 

  47. Arnold, K., L. Bordoli, J. Kopp, and T. Schwede. (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics. 22, 195–201.

    Article  PubMed  CAS  Google Scholar 

  48. Zhang, Y. and J. Skolnick. (2005) The protein structure prediction problem could be solved using the current PDB library. Proc Natl Acad Sci U S A. 102, 1029–1034.

    Article  PubMed  CAS  Google Scholar 

  49. Peitsch, M.C. (1995) Protein modeling by E-Mail. BioTechnology. 13, 658–660.

    Article  CAS  Google Scholar 

  50. van Gunsteren, W.F., S.R. Billeter, A.A. Eising, P.H. Hünenberger, et al., Biomolecular Simulations: The GROMOS96 Manual and User Guide. 1996, Zürich: VdF Hochschulverlag ETHZ.

    Google Scholar 

  51. Benkert, P., M. Kunzli, and T. Schwede. (2009) QMEAN server for protein model quality estimation. Nucleic Acids Res. 37, W510–514.

    Article  PubMed  CAS  Google Scholar 

  52. Arnold, K., F. Kiefer, J. Kopp, J.N. Battey, et al. (2009) The Protein Model Portal. J Struct Funct Genomics. 10, 1–8.

    Article  PubMed  CAS  Google Scholar 

  53. Berman, H.M., J.D. Westbrook, M.J. Gabanyi, W. Tao, et al. (2009) The protein structure initiative structural genomics knowledgebase. Nucleic Acids Res. 37, D365–368.

    Article  PubMed  CAS  Google Scholar 

  54. Berman, H., K. Henrick, H. Nakamura, and J.L. Markley. (2007) The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res. 35, D301–303.

    Article  PubMed  CAS  Google Scholar 

  55. Pieper, U., B.M. Webb, D.T. Barkan, D. Schneidman-Duhovny, et al. (2011) ModBase, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res. D465–474.

    Google Scholar 

  56. Roy, A., A. Kucukural, and Y. Zhang. (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 5, 725–738.

    Article  PubMed  CAS  Google Scholar 

  57. Ginalski, K., A. Elofsson, D. Fischer, and L. Rychlewski. (2003) 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics. 19, 1015–1018.

    Article  PubMed  CAS  Google Scholar 

  58. McGuffin, L.J. (2008) The ModFOLD server for the quality assessment of protein structural models. Bioinformatics. 24, 586–587.

    Article  PubMed  CAS  Google Scholar 

  59. Hartshorn, M.J. (2002) AstexViewer: a visualisation aid for structure-based drug design. J Comput Aided Mol Des. 16, 871–881.

    Article  PubMed  CAS  Google Scholar 

  60. Mulder, N. and R. Apweiler. (2007) InterPro and InterProScan: tools for protein sequence classification and comparison. Methods Mol Biol. 396, 59–70.

    Article  PubMed  CAS  Google Scholar 

  61. Jones, D.T. (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol. 292, 195–202.

    Article  PubMed  CAS  Google Scholar 

  62. Jones, D.T. and J.J. Ward. (2003) Prediction of disordered regions in proteins from position specific score matrices. Proteins. 53 Suppl 6, 573–578.

    Article  PubMed  CAS  Google Scholar 

  63. Jones, D.T. (2007) Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics. 23, 538–544.

    Article  PubMed  CAS  Google Scholar 

  64. Altschul, S.F., T.L. Madden, A.A. Schaffer, J. Zhang, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  65. Soding, J. (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics. 21, 951–960.

    Article  PubMed  Google Scholar 

  66. Hooft, R.W., G. Vriend, C. Sander, and E.E. Abola. (1996) Errors in protein structures. Nature. 381, 272.

    Article  PubMed  CAS  Google Scholar 

  67. Laskowski, R.A., M.W. MacArthur, D.S. Moss, and J.M. Thornton. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst. 26, 283–291.

    Article  CAS  Google Scholar 

  68. Kabsch, W. and C. Sander. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 22, 2577–2637.

    Article  PubMed  CAS  Google Scholar 

  69. Hutchinson, E.G. and J.M. Thornton. (1996) PROMOTIF - a program to identify and analyze structural motifs in proteins. Protein Sci. 5, 212–220.

    Article  PubMed  CAS  Google Scholar 

  70. Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/

  71. Stroud, R.M., S. Choe, J. Holton, H.R. Kaback, et al. (2009) 2007 annual progress report synopsis of the Center for Structures of Membrane Proteins. J Struct Funct Genomics. 10, 193–208.

    Article  PubMed  CAS  Google Scholar 

  72. Elsliger, M.A., A.M. Deacon, A. Godzik, S.A. Lesley, et al. (2010) The JCSG high-throughput structural biology pipeline. Acta Crystallogr Sect F Struct Biol Cryst Commun. 66, 1137–1142.

    Article  PubMed  Google Scholar 

  73. Vroling, B., M. Sanders, C. Baakman, A. Borrmann, et al. (2011) GPCRDB: information system for G protein-coupled receptors. Nucleic Acids Res. 39, D309–319.

    Article  PubMed  CAS  Google Scholar 

  74. Xiao, R., S. Anderson, J. Aramini, R. Belote, et al. (2010) The high-throughput protein sample production platform of the Northeast Structural Genomics Consortium. J Struct Biol. 172, 21–33.

    Article  PubMed  CAS  Google Scholar 

  75. Bonanno, J.B., S.C. Almo, A. Bresnick, M.R. Chance, et al. (2005) New York-Structural GenomiX Research Consortium (NYSGXRC): a large scale center for the protein structure initiative. J Struct Funct Genomics. 6, 225–232.

    Article  PubMed  CAS  Google Scholar 

  76. http://jcmm.burnham.org/.

  77. Nierman, W.C., T.V. Feldblyum, M.T. Laub, I.T. Paulsen, et al. (2001) Complete genome sequence of Caulobacter crescentus. Proc Natl Acad Sci U S A. 98, 4136–4141.

    Article  PubMed  CAS  Google Scholar 

  78. Aldridge, P., R. Paul, P. Goymer, P. Rainey, et al. (2003) Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus. Mol Microbiol. 47, 1695–1708.

    Article  PubMed  CAS  Google Scholar 

  79. Jenal, U. and J. Malone. (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet. 40, 385–407.

    Article  PubMed  CAS  Google Scholar 

  80. Wu, C.H., R. Apweiler, A. Bairoch, D.A. Natale, et al. (2006) The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucleic Acids Res. 34, D187–191.

    Article  PubMed  CAS  Google Scholar 

  81. Hunter, S., R. Apweiler, T.K. Attwood, A. Bairoch, et al. (2009) InterPro: the integrative protein signature database. Nucleic Acids Res. 37, D211–215.

    Article  PubMed  CAS  Google Scholar 

  82. Chan, C., R. Paul, D. Samoray, N.C. Amiot, et al. (2004) Structural basis of activity and allosteric control of diguanylate cyclase. Proc Natl Acad Sci U S A. 101, 17084–17089.

    Article  PubMed  CAS  Google Scholar 

  83. Wassmann, P., C. Chan, R. Paul, A. Beck, et al. (2007) Structure of BeF3- -modified response regulator PleD: implications for diguanylate cyclase activation, catalysis, and feedback inhibition. Structure. 15, 915–927.

    Article  PubMed  CAS  Google Scholar 

  84. De, N., M. Pirruccello, P.V. Krasteva, N. Bae, et al. (2008) Phosphorylation-independent regulation of the diguanylate cyclase WspR. PLoS Biol. 6, e67.

    Article  PubMed  Google Scholar 

  85. Sigrist, C.J., L. Cerutti, E. de Castro, P.S. Langendijk-Genevaux, et al. (2010) PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res. 38, D161–166.

    Article  PubMed  CAS  Google Scholar 

  86. Dunbrack, R.L., Jr. (2006) Sequence comparison and protein structure prediction. Curr Opin Struct Biol. 16, 374–384.

    Article  PubMed  CAS  Google Scholar 

  87. Waterhouse, A.M., J.B. Procter, D.M. Martin, M. Clamp, et al. (2009) Jalview Version 2 – a multiple sequence alignment editor and analysis workbench. Bioinformatics. 25, 1189–1191.

    Article  PubMed  CAS  Google Scholar 

  88. Rost, B. (1999) Twilight zone of protein sequence alignments. Protein Eng. 12, 85–94.

    Article  PubMed  CAS  Google Scholar 

  89. Krissinel, E. and K. Henrick. (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol. 372, 774–797.

    Article  PubMed  CAS  Google Scholar 

  90. Paul, R., S. Abel, P. Wassmann, A. Beck, et al. (2007) Activation of the diguanylate cyclase PleD by phosphorylation-mediated dimerization. J Biol Chem. 282, 29170–29177.

    Article  PubMed  CAS  Google Scholar 

  91. Paul, R., S. Abel, P. Wassmann, A. Beck, et al. (2007) Activation of the diguanylate cyclase PleD by phosphorylation-mediated dimerization. J Biol Chem. 282, 29170–29177.

    Article  PubMed  CAS  Google Scholar 

  92. Benkert, P., M. Biasini, and T. Schwede. (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics. 27, 343–350.

    Article  PubMed  CAS  Google Scholar 

  93. Ramachandran, G.N., C. Ramakrishnan, and V. Sasisekharan. (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol. 7, 95–99.

    Article  PubMed  CAS  Google Scholar 

  94. Briggs, R., L. Dworkin, J. Briggs, E. Dessypris, et al. (1994) Interferon alpha selectively affects expression of the human myeloid cell nuclear differentiation antigen in late stage cells in the monocytic but not the granulocytic lineage. J Cell Biochem. 54, 198–206.

    Article  PubMed  CAS  Google Scholar 

  95. Briggs, R.C., J.A. Briggs, J. Ozer, L. Sealy, et al. (1994) The human myeloid cell nuclear differentiation antigen gene is one of at least two related interferon-inducible genes located on chromosome 1q that are expressed specifically in hematopoietic cells. Blood. 83, 2153–2162.

    PubMed  CAS  Google Scholar 

  96. Dawson, M.J., J.A. Trapani, R.C. Briggs, J.K. Nicholl, et al. (1995) The closely linked genes encoding the myeloid nuclear differentiation antigen (MNDA) and IFI16 exhibit contrasting haemopoietic expression. Immunogenetics. 41, 40–43.

    Article  PubMed  CAS  Google Scholar 

  97. Pruitt, K.D., T. Tatusova, W. Klimke, and D.R. Maglott. (2009) NCBI Reference Sequences: current status, policy and new initiatives. Nucleic Acids Res. 37, D32–36.

    Article  PubMed  CAS  Google Scholar 

  98. Kersey, P.J., J. Duarte, A. Williams, Y. Karavidopoulou, et al. (2004) The International Protein Index: an integrated database for proteomics experiments. Proteomics. 4, 1985–1988.

    Article  PubMed  CAS  Google Scholar 

  99. Benson, D.A., I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, et al. (2011) GenBank. Nucleic Acids Res. 39, D32–37.

    Article  PubMed  Google Scholar 

  100. Baxevanis, A.D. (2008) Searching NCBI databases using Entrez. Curr Protoc Bioinformatics. Chapter 1, Unit 1 3.

    Google Scholar 

  101. Chen, L., R. Oughtred, H.M. Berman, and J. Westbrook. (2004) TargetDB: a target registration database for structural genomics projects. Bioinformatics. 20, 2860–2862.

    Article  PubMed  CAS  Google Scholar 

  102. Saito, K., M. Inoue, S. Koshiba, T. Kigawa, et al. (2006) DOI:10.2210/pdb2dbg/pdb.

  103. Fairbrother, W.J., N.C. Gordon, E.W. Humke, K.M. O’Rourke, et al. (2001) The PYRIN domain: a member of the death domain-fold superfamily. Protein Sci. 10, 1911–1918.

    Article  PubMed  CAS  Google Scholar 

  104. http://www.nesg.org/.

  105. Koh, I.Y., V.A. Eyrich, M.A. Marti-Renom, D. Przybylski, et al. (2003) EVA: Evaluation of protein structure prediction servers. Nucleic Acids Res. 31, 3311–3315.

    Article  PubMed  CAS  Google Scholar 

  106. Kopp, J., L. Bordoli, J.N.D. Battey, F. Kiefer, et al. (2007) Assessment of CASP7 Predictions for Template-Based Modeling Targets. Proteins: Structure, Function, and Bioinformatics. 69, 38–56.

    Article  CAS  Google Scholar 

  107. Liao, J.C.C., R. Lam, M. Ravichandran, J. Ma, et al. (2007) DOI:10.2210/pdb2oq0/pdb.

  108. Schwede, T., J. Kopp, N. Guex, and M.C. Peitsch. (2003) SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 31, 3381–3385.

    Article  PubMed  CAS  Google Scholar 

  109. Caly, D.L., P.W. O’Toole, and S.A. Moore. (2010) The 2.2-Å structure of the HP0958 protein from Helicobacter pylori reveals a kinked anti-parallel coiled-coil hairpin domain and a highly conserved ZN-ribbon domain. J Mol Biol. 403, 405–419.

    Article  PubMed  CAS  Google Scholar 

  110. Radivojac, P., L.M. Iakoucheva, C.J. Oldfield, Z. Obradovic, et al. (2007) Intrinsic disorder and functional proteomics. Biophys J. 92, 1439–1456.

    Article  PubMed  CAS  Google Scholar 

  111. http://blast.ncbi.nlm.nih.gov/

  112. http://www.wwpdb.org/docs.html.

  113. Bordoli, L., F. Kiefer, K. Arnold, P. Benkert, et al. (2009) Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc. 4, 1–13.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Konstantin Arnold for his dedicated support of the SWISS-MODEL service, Jürgen Haas for his commitment to new developments in PMP, and all members of the group for fruitful discussions.

Funding: The development and operation of SWISS-MODEL was supported by the SIB Swiss Institute of Bioinformatics; The PMP of the Nature PSI Structural Biology Knowledgebase was supported by the National Institutes of Health NIH as a subgrant with Rutgers University, under Prime Agreement Award Numbers: 3U54GM074958-04S2 and 1U01 GM093324-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Schwede .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media,LLC

About this protocol

Cite this protocol

Bordoli, L., Schwede, T. (2011). Automated Protein Structure Modeling with SWISS-MODEL Workspace and the Protein Model Portal. In: Orry, A., Abagyan, R. (eds) Homology Modeling. Methods in Molecular Biology, vol 857. Humana Press. https://doi.org/10.1007/978-1-61779-588-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-588-6_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-587-9

  • Online ISBN: 978-1-61779-588-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics