Skip to main content

Effective Techniques for Protein Structure Mining

  • Protocol
  • First Online:
Homology Modeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 857))

Abstract

Retrieval and characterization of protein structure relationships are instrumental in a wide range of tasks in structural biology. The classification of protein structures (COPS) is a web service that provides efficient access to structure and sequence similarities for all currently available protein structures. Here, we focus on the application of COPS to the problem of template selection in homology modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suhrer SJ, Wiederstein M, Gruber M, et al. (2009) COPS-a novel workbench for explorations in fold space. Nucleic Acids Res 37:W539–W544

    Article  PubMed  CAS  Google Scholar 

  2. Suhrer SJ, Wiederstein M, Sippl MJ (2007) QSCOP – SCOP quantified by structural relationships. Bioinformatics 23:513–514

    Article  PubMed  CAS  Google Scholar 

  3. Suhrer SJ, Gruber M, Sippl MJ (2007) QSCOP-BLAST–fast retrieval of quantified structural information for protein sequences of unknown structure. Nucleic Acids Res 35:W411–W415

    Article  PubMed  Google Scholar 

  4. Choi WS, Jeong BC, Joo YJ, et al. (2010) Structural basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases. Nat Struct Mol Biol 17:1175–1181

    Article  PubMed  CAS  Google Scholar 

  5. Norambuena T, Melo F (2010) The Protein-DNA Interface database. BMC Bioinformatics 11:262

    Article  PubMed  Google Scholar 

  6. Berman HM, Westbrook J, Feng Z, et al. (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Article  PubMed  CAS  Google Scholar 

  7. Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in proteins. EMBO J 5:823–826

    PubMed  CAS  Google Scholar 

  8. Sippl MJ, Wiederstein M (2008) A note on difficult structure alignment problems. Bioinformatics 24:426–427

    Article  PubMed  CAS  Google Scholar 

  9. Sippl MJ, Suhrer SJ, Gruber M, et al. (2008) A discrete view on fold space. Bioinformatics 24:870–871

    Article  PubMed  CAS  Google Scholar 

  10. Riedl SJ, Li W, Chao Y, et al. (2005) Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature 434:926–933

    Article  PubMed  CAS  Google Scholar 

  11. Cozzetto D, Kryshtafovych A, Fidelis K, et al. (2009) Evaluation of template-based models in CASP8 with standard measures. Proteins 77 Suppl 9:18–28

    Article  PubMed  CAS  Google Scholar 

  12. Frank K, Gruber M, Sippl MJ (2010) COPS Benchmark: interactive analysis of database search methods. Bioinformatics 26:574–575

    Article  PubMed  CAS  Google Scholar 

  13. Söding J (2005) Protein homology detection by HMM-HMM comparison. Bioinformatics 21:951–960

    Article  PubMed  Google Scholar 

  14. JCSG (2008) Crystal structure of carboxymuconolactone decarboxylase family protein possibly involved in oxygen detoxification (1591455) from Methanococcus jannaschii at 1.75Ã… resolution. To be published

    Google Scholar 

  15. Kuzin A, Xu JGX, Neely H, et al. (2007) Crystal structure of the protein O27018 from Methanobacterium thermoautotrophicum. To be published

    Google Scholar 

  16. Ito K, Arai R, Fusatomi E, et al. (2006) Crystal structure of the conserved protein TTHA0727 from Thermus thermophilus HB8 at 1.9 A resolution: A CMD family member distinct from carboxymuconolactone decarboxylase (CMD) and AhpD. Protein Sci 15:1187–1192

    Article  PubMed  CAS  Google Scholar 

  17. Kim Y, Joachimiak A, Brunzelle J, et al. (2003) Crystal Structure Analysis of Thermotoga maritima protein TM1620 (APC4843). To be Published

    Google Scholar 

  18. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16:276–277

    Article  PubMed  CAS  Google Scholar 

  19. JCSG (2007) Crystal structure of Putative carboxymuconolactone decarboxylase (YP-555818.1) from Burkholderia xenovorans LB400 at 1.65Ã… resolution

    Google Scholar 

  20. Koonin EV (2005) Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet 39:309–338

    Article  PubMed  CAS  Google Scholar 

  21. Pál C, Papp B, Lercher MJ (2006) An integrated view of protein evolution. Nat Rev Genet 7:337–348

    Article  PubMed  Google Scholar 

  22. Andreeva A, Murzin AG (2006) Evolution of protein fold in the presence of functional constraints. Curr Opin Struct Biol 16:399–408

    Article  PubMed  CAS  Google Scholar 

  23. Chothia C, Gough J (2009) Genomic and structural aspects of protein evolution. Biochem J 419:15–28

    Article  PubMed  CAS  Google Scholar 

  24. Worth CL, Gong S, Blundell TL (2009) Structural and functional constraints in the evolution of protein families. Nat Rev Mol Cell Biol 10:709–720

    PubMed  CAS  Google Scholar 

  25. Yan N, Chai J, Lee ES, et al. (2005) Structure of the CED-4-CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans. Nature 437:831–837

    Article  PubMed  CAS  Google Scholar 

  26. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    Article  PubMed  CAS  Google Scholar 

  27. Bordoli L, Kiefer F, Arnold K, et al. (2009) Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc 4:1–13

    Article  PubMed  CAS  Google Scholar 

  28. Wlodawer A, Minor W, Dauter Z, et al. (2008) Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J 275:1–21

    Article  PubMed  CAS  Google Scholar 

  29. Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17:355–362

    Article  PubMed  CAS  Google Scholar 

  30. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  PubMed  Google Scholar 

  31. Weichenberger CX, Byzia P, Sippl MJ (2008) Visualization of unfavorable interactions in protein folds. Bioinformatics 24:1206–1207

    Article  PubMed  CAS  Google Scholar 

  32. Ginzinger SW, Weichenberger CX, Sippl MJ (2010) Detection of unrealistic molecular environments in protein structures based on expected electron densities. J Biomol NMR 47:33–40

    Article  PubMed  CAS  Google Scholar 

  33. Laskowski RA, MacArthur MW, Moss DS, et al. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  34. Chen VB, Arendall WB, Headd JJ, et al. (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21

    Article  PubMed  Google Scholar 

  35. Hooft RW, Vriend G, Sander C, et al. (1996) Errors in protein structures. Nature 381:272

    Article  PubMed  CAS  Google Scholar 

  36. Davidson AR (2008) A folding space odyssey. Proc Natl Acad Sci U S A 105:2759–2760

    Article  PubMed  CAS  Google Scholar 

  37. Sippl MJ (2009) Fold space unlimited. Curr Opin Struct Biol 19:312–320

    Article  PubMed  CAS  Google Scholar 

  38. Dalal S, Balasubramanian S, Regan L (1997) Protein alchemy: changing beta-sheet into alpha-helix. Nat Struct Biol 4:548–552

    Article  PubMed  CAS  Google Scholar 

  39. He Y, Chen Y, Alexander P, et al. (2008) NMR structures of two designed proteins with high sequence identity but different fold and function. Proc Natl Acad Sci U S A 105:14412–14417

    Article  PubMed  CAS  Google Scholar 

  40. Roessler CG, Hall BM, Anderson WJ, et al. (2008) Transitive homology-guided structural studies lead to discovery of Cro proteins with 40% sequence identity but different folds. Proc Natl Acad Sci U S A 105:2343–2348

    Article  PubMed  CAS  Google Scholar 

  41. Murzin AG (2008) Metamorphic Proteins. Science 320:1725–1726

    Article  PubMed  CAS  Google Scholar 

  42. Gambin Y, Schug A, Lemke EA, et al. (2009) Direct single-molecule observation of a protein living in two opposed native structures. Proc Natl Acad Sci U S A 106:10153–10158

    Article  PubMed  CAS  Google Scholar 

  43. Bryan PN, Orban J (2010) Proteins that switch folds. Curr Opin Struct Biol 20:482–488

    Article  PubMed  CAS  Google Scholar 

  44. Tuinstra RL, Peterson FC, Kutlesa S, et al. (2008) Interconversion between two unrelated protein folds in the lymphotactin native state. Proc Natl Acad Sci U S A 105:5057–5062

    Article  PubMed  CAS  Google Scholar 

  45. Ginalski K (2006) Comparative modeling for protein structure prediction. Curr Opin Struct Biol 16:172–177

    Article  PubMed  CAS  Google Scholar 

  46. Kosloff M, Kolodny R (2008) Sequence-similar, structure-dissimilar protein pairs in the PDB. Proteins 71:891–902

    Article  PubMed  CAS  Google Scholar 

  47. Zhang H, Neal S, Wishart DS (2003) RefDB: a database of uniformly referenced protein chemical shifts. J Biomol NMR 25:173–195

    Article  PubMed  CAS  Google Scholar 

  48. Schwieters CD, Kuszewski JJ, Tjandra N, et al. (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73

    Article  PubMed  CAS  Google Scholar 

  49. Wishart DS, Sykes BD, Richards FM (1992) The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31:1647–1651

    Article  PubMed  CAS  Google Scholar 

  50. Wang Y, Jardetzky O (2002) Probability-based protein secondary structure identification using combined NMR chemical-shift data. Protein Sci 11:852–861

    Article  PubMed  CAS  Google Scholar 

  51. Berjanskii MV, Neal S, Wishart DS (2006) PREDITOR: a web server for predicting protein torsion angle restraints. Nucleic Acids Res 34:W63–W69

    Article  PubMed  CAS  Google Scholar 

  52. Shen Y, Delaglio F, Cornilescu G, et al. (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223

    Article  PubMed  CAS  Google Scholar 

  53. Oldfield E (1995) Chemical shifts and three-dimensional protein structures. J Biomol NMR 5:217–225

    Article  PubMed  CAS  Google Scholar 

  54. Ginzinger SW, Fischer J (2006) SimShift: identifying structural similarities from NMR chemical shifts. Bioinformatics 22:460–465

    Article  PubMed  CAS  Google Scholar 

  55. Ginzinger SW, Coles M (2009) SimShiftDB; local conformational restraints derived from chemical shift similarity searches on a large synthetic database. J Biomol NMR 43:179–185

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by FWF Austria grant number P21294-B12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan J. Suhrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media,LLC

About this protocol

Cite this protocol

Suhrer, S.J., Gruber, M., Wiederstein, M., Sippl, M.J. (2011). Effective Techniques for Protein Structure Mining. In: Orry, A., Abagyan, R. (eds) Homology Modeling. Methods in Molecular Biology, vol 857. Humana Press. https://doi.org/10.1007/978-1-61779-588-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-588-6_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-587-9

  • Online ISBN: 978-1-61779-588-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics