Skip to main content

Investigating Protein Variants Using Structural Calculation Techniques

  • Protocol
  • First Online:
  • 3757 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 857))

Abstract

Structure calculation techniques can be very useful to bridge the gap between available sequence information and structural knowledge. In order to understand the molecular mechanisms behind diseases caused by residue exchanges, knowledge about the modified structure is needed. In this chapter, we describe how energy minimizations and molecular dynamics can be useful tools in order to study the structural effects of sequence variation. With these techniques, together with investigation of other properties, it is often possible to obtain a complete picture of the effect and mechanism behind disease-causing mutations. To take this information one step further, we also describe prediction methods that can be used to judge the effects of mutations and how to evaluate these and the interplay between the protein properties.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Weigelt J. (2010) Structural genomics-impact on biomedicine and drug discovery, Exp Cell Res 316, 1332–1338.

    Article  PubMed  CAS  Google Scholar 

  2. Metzker M L. (2009) Sequencing technologies - the next generation, Nat Rev Genet 11, 31–46.

    Article  PubMed  Google Scholar 

  3. Durbin R M, Abecasis G R, Altshuler D L, Auton A, Brooks L D, Gibbs R A, Hurles M E, and McVean G A. (2010) A map of human genome variation from population-scale sequencing, Nature 467, 1061–1073.

    Article  CAS  Google Scholar 

  4. Benson D A, Karsch-Mizrachi I, Lipman D J, Ostell J, and Wheeler D L. (2005) GenBank, Nucleic Acids Res 33, D34–38.

    Article  PubMed  CAS  Google Scholar 

  5. Boeckmann B, Bairoch A, Apweiler R, Blatter M C, Estreicher A, Gasteiger E, Martin M J, Michoud K, O’Donovan C, Phan I, Pilbout S, and Schneider M. (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003, Nucleic Acids Res 31, 365–370.

    Article  PubMed  CAS  Google Scholar 

  6. Dutta S, Zardecki C, Goodsell D S, and Berman H M. Promoting a structural view of biology for varied audiences: an overview of RCSB PDB resources and experiences, J Appl Crystallogr 43, 1224–1229.

    Google Scholar 

  7. Castrignano T, De Meo P D, Cozzetto D, Talamo I G, and Tramontano A. (2006) The PMDB Protein Model Database, Nucleic Acids Res 34, D306–309.

    Article  PubMed  CAS  Google Scholar 

  8. Arnold K, Bordoli L, Kopp J, and Schwede T. (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling, Bioinformatics 22, 195–201.

    Article  PubMed  CAS  Google Scholar 

  9. Kiefer F, Arnold K, Kunzli M, Bordoli L, and Schwede T. (2009) The SWISS-MODEL Repository and associated resources, Nucleic Acids Res 37, D387–392.

    Article  PubMed  CAS  Google Scholar 

  10. Pieper U, Eswar N, Webb B M, Eramian D, Kelly L, Barkan D T, Carter H, Mankoo P, Karchin R, Marti-Renom M A, Davis F P, and Sali A. (2009) MODBASE, a database of annotated comparative protein structure models and associated resources, Nucleic Acids Res 37, D347–354.

    Article  PubMed  CAS  Google Scholar 

  11. Mackey A J, Haystead T A, and Pearson W R. (2002) Getting more from less: algorithms for rapid protein identification with multiple short peptide sequences, Mol Cell Proteomics 1, 139–147.

    Article  PubMed  CAS  Google Scholar 

  12. Altschul S F, Madden T L, Schaffer A A, Zhang J, Zhang Z, Miller W, and Lipman D J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res 25, 3389–3402.

    Article  PubMed  CAS  Google Scholar 

  13. Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J, and Higgins D G. (2007) Clustal W and Clustal X version 2.0, Bioinformatics 23, 2947–2948.

    Article  PubMed  CAS  Google Scholar 

  14. Edgar R C. (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity, BMC Bioinformatics 5, 113.

    Article  PubMed  Google Scholar 

  15. Abagyan R, and Totrov M. (1994) Biased probability Monte Carlo conformational searches and electrostatic calculations for peptides and proteins, J Mol Biol 235, 983–1002.

    Article  PubMed  CAS  Google Scholar 

  16. Abagyan R, Totrov M, and Kuznetsov D. (1994) ICM - A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation, Journal of Computational Chemistry 15, 488–506.

    Article  CAS  Google Scholar 

  17. Pettersen E F, Goddard T D, Huang C C, Couch G S, Greenblatt D M, Meng E C, and Ferrin T E. (2004) UCSF Chimera – a visualization system for exploratory research and analysis, J Comput Chem 25, 1605–1612.

    Article  PubMed  CAS  Google Scholar 

  18. Jorgensen W L, and Tirado-Rives J. (2005) Molecular modeling of organic and biomolecular systems using BOSS and MCPRO, J Comput Chem 26, 1689–1700.

    Article  PubMed  CAS  Google Scholar 

  19. Lindahl E, Hess B, and van der Spoel D. (2001) GROMACS: A package for molecular simulation and trajectory analysis, J Mol Mod 7, 306–317.

    CAS  Google Scholar 

  20. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E, and Berendsen H J. (2005) GROMACS: fast, flexible, and free, J Comput Chem 26, 1701–1718.

    Article  Google Scholar 

  21. Gruber C C, and Pleiss J. (2011) Systematic benchmarking of large molecular dynamics simulations employing GROMACS on massive multiprocessing facilities, J Comput Chem 32, 600–606.

    Google Scholar 

  22. Case D A, Cheatham T E, 3rd, Darden T, Gohlke H, Luo R, Merz K M, Jr., Onufriev A, Simmerling C, Wang B, and Woods R J. (2005) The Amber biomolecular simulation programs, J Comput Chem 26, 1668–1688.

    Article  PubMed  CAS  Google Scholar 

  23. Brooks B R, Bruccoleri R E, Olafson B D, States D J, Swaminathan S, and Karplus M. (1982) CHARMM: A program for macromolecular energy, minimization, and dynamics calculations, Journal of Computational Chemistry 4, 187–217.

    Article  Google Scholar 

  24. MacKerell A D, J.; Brooks B, Brooks C L, I., Nilsson L, Roux B, Won Y, and Karplus M. (1998) CHARMM: The Energy Function and Its Parameterization with an Overview of the Program., The Encyclopedia of Computational Chemistry 1, 271–277.

    Google Scholar 

  25. Anfinsen C B, Haber E, Sela M, and White F H. (1961) The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain., Proc Natl Acad Sci USA 47, 1309–1314.

    Article  Google Scholar 

  26. Levinthal C. (1968) Are there pathways for protein folding?, Extrait du Journal de Chimie Physique 65, 44.

    Google Scholar 

  27. Momany F, McGuire R, Burgess A, and Scheraga H. (1975) Energy parameters in polypeptides, VII: Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids., J. Phys. Chem. 79, 2361–2380.

    Article  CAS  Google Scholar 

  28. Schuler L D, Daura X, and van Gunsteren W F. (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase., Journal of Computational Chemistry 11, 1205–1218.

    Article  Google Scholar 

  29. Westermark P. (1972) Quantitative studies on amyloid in the islets of Langerhans, Ups J Med Sci 77, 91–94.

    PubMed  CAS  Google Scholar 

  30. Kruger D F, Martin C L, and Sadler C E. (2006) New insights into glucose regulation, Diabetes Educ 32, 221–228.

    Article  PubMed  Google Scholar 

  31. Paulsson J F, Andersson A, Westermark P, and Westermark G T. (2006) Intracellular amyloid-like deposits contain unprocessed pro-islet amyloid polypeptide (proIAPP) in beta cells of transgenic mice overexpressing the gene for human IAPP and transplanted human islets, Diabetologia 49, 1237–1246.

    Article  PubMed  CAS  Google Scholar 

  32. Lim D, Poole K, and Strynadka N C. (2002) Crystal structure of the MexR repressor of the mexRAB-oprM multidrug efflux operon of Pseudomonas aeruginosa, J Biol Chem 277, 29253–29259.

    Article  PubMed  CAS  Google Scholar 

  33. Dayhoff M O, Schwartz R, and Orcutt B C. (1978) A model of Evolutionary Change in Proteins, Atlas of protein sequence and structure (volume 5, supplement 3 ed.). Nat. Biomed. Res. Found., 345–358.

    Google Scholar 

  34. Henikoff S, and Henikoff J G. (1992) Amino Acid Substitution Matrices from Protein Blocks, PNAS 89, 10915–10919.

    Article  PubMed  CAS  Google Scholar 

  35. Parthiban V, Gromiha M M, and Schomburg D. (2006) CUPSAT: prediction of protein stability upon point mutations, Nucleic Acids Res 34, W239–242.

    Article  PubMed  CAS  Google Scholar 

  36. Robins T, Carlsson J, Sunnerhagen M, Wedell A, and Persson B. (2006) Molecular model of human CYP21 based on mammalian CYP2C5: structural features correlate with clinical severity of mutations causing congenital adrenal hyperplasia, Mol Endocrinol 20, 2946–2964.

    Article  PubMed  CAS  Google Scholar 

  37. Carlsson J, Soussi T, and Persson B. (2009) Investigation and prediction of the severity of p53 mutants using parameters from structural calculations, FEBS J 276, 4142–4155.

    Article  CAS  Google Scholar 

  38. Pearson K. (1901) On Lines and Planes of Closest Fit to Systems of Points in Space, Philosophical Magazine 1901, 13.

    Google Scholar 

  39. Boser B, Guyon I, and Vapnik V. (1992) A training algorithm for optimal margin classifiers., Fifth Annual Workshop on Computational Learning Theory. ACM Press, Pittsburgh.

    Google Scholar 

  40. Kecman V. (2001) Learning and Soft Computing - Support Vector Machines, Neural Networks, Fuzzy Logic Systems, The MIT press.

    Google Scholar 

  41. Joachims T. (1999) Making large-Scale SVM Learning Practical. Advances in Kernel Methods - Support Vector Learning, MIT Press.

    Google Scholar 

  42. Chang C-C, and Lin C-J. (2001) LIBSVM : a library for support vector machines.

    Google Scholar 

  43. Igel C, Heidrich-Meisner V, and Glasmachers T. (2008) Shark, Journal of Machine Learning Research 9, 993–996.

    Google Scholar 

  44. Breiman L, Friedman J, Olshen R, and Stone C. (1984) Classification and Regression Trees, Wadsworth.

    Google Scholar 

  45. Breiman L. (2001) Random forests, Random forests 45, 28–32.

    Google Scholar 

  46. Yue P, Melamud E, and Moult J. (2006) SNPs3D: candidate gene and SNP selection for association studies, BMC Bioinformatics 7, 166.

    Article  PubMed  Google Scholar 

  47. Calabrese R, Capriotti E, Fariselli P, Martelli P L, and Casadio R. (2009) Functional annotations improve the predictive score of human disease-related mutations in proteins, Hum Mutat 30, 1237–1244.

    Article  PubMed  CAS  Google Scholar 

  48. Ng P C, and Henikoff S. (2002) Accounting for human polymorphisms predicted to affect protein function, Genome Res 12, 436–446.

    Article  PubMed  CAS  Google Scholar 

  49. Thomas P D, Campbell M J, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, and Narechania A. (2003) PANTHER: a library of protein families and subfamilies indexed by function, Genome Res 13, 2129–2141.

    Article  PubMed  CAS  Google Scholar 

  50. Thomas P D, Kejariwal A, Guo N, Mi H, Campbell M J, Muruganujan A, and Lazareva-Ulitsky B. (2006) Applications for protein sequence-function evolution data: mRNA/protein expression analysis and coding SNP scoring tools, Nucleic Acids Res 34, W645–650.

    Article  PubMed  Google Scholar 

  51. Ramensky V, Bork P, and Sunyaev S. (2002) Human non-synonymous SNPs: server and survey, Nucleic Acids Res 30, 3894–3900.

    Article  PubMed  CAS  Google Scholar 

  52. Sunyaev S, Ramensky V, and Bork P. (2000) Towards a structural basis of human non-synonymous single nucleotide polymorphisms, Trends Genet 16, 198–200.

    Article  PubMed  CAS  Google Scholar 

  53. Sunyaev S, Ramensky V, Koch I, Lathe W, 3rd, Kondrashov A S, and Bork P. (2001) Prediction of deleterious human alleles, Hum Mol Genet 10, 591–597.

    Article  PubMed  CAS  Google Scholar 

  54. Matthews B W. (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme, Biochim Biophys Acta 405, 442–451.

    PubMed  CAS  Google Scholar 

  55. Rodgers J L, and Nicewander W A. (1988) Thirteen ways to look at the correlation coefficient, The American Statistician 42, 59–66.

    Article  Google Scholar 

  56. Tibshirani R. (1996) Regression shrinkage and selection via the lasso, J. Royal. Statist. Soc B. 58, 267–288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengt Persson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media,LLC

About this protocol

Cite this protocol

Carlsson, J., Persson, B. (2011). Investigating Protein Variants Using Structural Calculation Techniques. In: Orry, A., Abagyan, R. (eds) Homology Modeling. Methods in Molecular Biology, vol 857. Humana Press. https://doi.org/10.1007/978-1-61779-588-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-588-6_14

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-587-9

  • Online ISBN: 978-1-61779-588-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics