Skip to main content

The Origin and Evolution of New Genes

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 856))

Abstract

New genes are a major source of genetic innovation in genomes. However, until recently, understanding how new genes originate and how they evolve was hampered by the lack of appropriate genetic datasets. The advent of the genomic era brought about a revolution in the amount of data available to study new genes. For the first time, decades-old theoretical principles could be tested empirically and novel and unexpected avenues of research opened up. This chapter explores how genomic data can and is being used to study both the origin and evolution of new genes and the surprising discoveries made thus far.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Taylor JS, Raes J (2004) Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet 38:615–643

    PubMed  CAS  Google Scholar 

  2. Haldane JBS (1932) The causes of evolution. Princeton Science Library

    Google Scholar 

  3. Bridges CB (1936) The Bar 'gene' a duplication. Science 83:210–211

    PubMed  CAS  Google Scholar 

  4. Ohno S (1970) Evolution by gene duplication. Springer-Verlag

    Google Scholar 

  5. Long M, Betrán E, Thornton K et al (2003) The origin of new genes: glimpses from the young and old. Nat Rev Genet 4:865–875

    PubMed  CAS  Google Scholar 

  6. Presgraves DC (2005) Evolutionary genomics: new genes for new jobs. Curr Biol 15:R52–53

    PubMed  CAS  Google Scholar 

  7. Long M, Langley CH (1993) Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260:91–95

    PubMed  CAS  Google Scholar 

  8. Kuwada Y (1911) Meiosis in the pollen mother cells of Zea Mays L. Bot Mag 25:1633

    Google Scholar 

  9. Conant GC, Wolfe KH (2008) Turning a hobby into a job: how duplicated genes find new functions. Nat Rev Genet 9:938–950

    PubMed  CAS  Google Scholar 

  10. Kuraku S, Meyer A (2012) Detection and phylogenetic assessment of conserved synteny derived from whole genome duplications. In: Anisimova M (ed) Evolutionary genomics: statistical and computational methods (volume 1). Methods in Molecular Biology, Springer Science+Business Media New York

    Google Scholar 

  11. Wapinski I, Pfeffer A, Friedman N et al (2007) Natural history and evolutionary principles of gene duplication in fungi. Nature 449:54–61

    PubMed  CAS  Google Scholar 

  12. Maere S, De Bodt S, Raes J (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci U S A 102:5454–5459

    PubMed  CAS  Google Scholar 

  13. Zhang J (2003) Evolution by gene duplication: an update. Trends Eco Evo 18: 292–298

    Google Scholar 

  14. Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    PubMed  CAS  Google Scholar 

  15. Budd A (2012) Diversity of genome organization. In: Anisimova M (ed) Evolutionary genomics: statistical and computational methods (volume 1). Methods in Molecular Biology, Springer Science+Business Media New York

    Google Scholar 

  16. Cliften P, Sudarsanam P, Desikan A et al (2003) Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301:71–76

    PubMed  CAS  Google Scholar 

  17. Kellis M, Patterson N, Endrizzi M et al (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241–254.

    PubMed  CAS  Google Scholar 

  18. Gao LZ, Innan H (2004) Very low gene duplication rate in the yeast genome. Science 306:1367–1370.

    PubMed  CAS  Google Scholar 

  19. Drosophila 12 Genomes Consortium (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–218

    Google Scholar 

  20. Hahn MW, Han MV, Han SG (2007) Gene family evolution across 12 Drosophila genomes. PLoS Genet 3:e197

    PubMed  Google Scholar 

  21. Lynch M, Conery JS (2003) The evolutionary demography of duplicate genes.J Struct Funct Genomics 3:35–44

    PubMed  CAS  Google Scholar 

  22. Osada N, Innan H (2008) Duplication and gene conversion in the Drosophila melanogaster genome. PLoS Genet 4:e1000305

    PubMed  Google Scholar 

  23. Long M, Thornton K (2001) Gene duplication and evolution. Science 293:1551

    CAS  Google Scholar 

  24. Fiston-Lavier AS, Anxolabehere D, Quesneville H (2007) A model of segmental duplication formation in Drosophila melanogaster. Genome Res 17:1458–1470

    PubMed  CAS  Google Scholar 

  25. Bailey JA, Gu Z, Clark RA et al (2002) Recent segmental duplications in the human genome. Science 297:1003–1007

    PubMed  CAS  Google Scholar 

  26. Marques-Bonet T, Girirajan S, Eichler EE (2009) The origins and impact of primate segmental duplications. Trends Genet 25:443–454

    PubMed  CAS  Google Scholar 

  27. Medvedev P, Stanciu M, Brudno M (2009) Computational methods for discovering structural variation with next-generation sequencing. Nat Methods 6:S13-20

    PubMed  CAS  Google Scholar 

  28. Gu W, Zhang F, Lupski JR (2008) Mechanisms for human genomic rearrangements. Pathogenetics 1:4

    Google Scholar 

  29. Aguilera A, Gómez-González B (2008) Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet 9:204–217

    PubMed  CAS  Google Scholar 

  30. Hastings PJ, Lupski JR, Rosenberg SM et al (2009) Mechanisms of change in gene copy number. Nat Rev Genet 10:551–564

    PubMed  CAS  Google Scholar 

  31. Rogers RL, Bedford T, Hartl DL (2009) Formation and longevity of chimeric and duplicate genes in Drosophila melanogaster. Genetics 181:313–322

    PubMed  CAS  Google Scholar 

  32. Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458:719–724

    PubMed  CAS  Google Scholar 

  33. Long M, Rosenberg C, Gilbert W (1995) Intron phase correlations and the evolution of the intron/exon structure of genes. Proc Natl Acad Sci U S A 92:12495–12499

    PubMed  CAS  Google Scholar 

  34. Patthy L (1999) Genome evolution and the evolution of exon-shuffling--a review. Gene 238:103–114

    PubMed  CAS  Google Scholar 

  35. Kaessmann H, Vinckenbosch N, Long M (2009) RNA-based gene duplication: mechanistic and evolutionary insights. Nat Rev Genet 10:19–31

    PubMed  CAS  Google Scholar 

  36. Marques AC, Dupanloup I, Vinckenbosch N et al (2005) Emergence of young human genes after a burst of retroposition in primates. PLoS Biol 3:e357

    PubMed  Google Scholar 

  37. Wang W, Zheng H, Fan C et al (2006) High rate of chimeric gene origination by retroposition in plant genomes. Plant Cell 18:1791–1802

    PubMed  CAS  Google Scholar 

  38. Bai Y, Casola C, Feschotte C et al (2007) Comparative genomics reveals a constant rate of origination and convergent acquisition of functional retrogenes in Drosophila. Genome Biol 8:R11

    PubMed  Google Scholar 

  39. Kaessmann H (2010) Origins, evolution, and phenotypic impact of new genes. Genome Res 20:1313–1326

    PubMed  CAS  Google Scholar 

  40. Patterson C (1988) Homology in classical and molecular biology. Mol Biol Evol 5: 603–625

    PubMed  CAS  Google Scholar 

  41. Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    PubMed  CAS  Google Scholar 

  42. Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3:679–687

    PubMed  CAS  Google Scholar 

  43. Zhaxybayeva O (2009) Detection and quantitative assessment of horizontal gene transfer. Methods Mol Biol 532:195–213

    PubMed  CAS  Google Scholar 

  44. Lawrence J, Azad R (2012) Detecting lateral gene transfer. In: Anisimova M (ed) Evolutionary genomics: statistical and computational methods (volume 1). Methods in Molecular Biology, Springer Science+Business Media New York

    Google Scholar 

  45. Martin W, Herrmann RG (1998) Gene transfer from organelles to the nucleus: how much, what happens, and Why? Plant Physiol 118:9–17

    PubMed  CAS  Google Scholar 

  46. Dunning Hotopp JC, Clark ME, Oliveira DC et al (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:1753–1756

    PubMed  CAS  Google Scholar 

  47. Doolittle RF, Feng DF, Anderson KL et al (1990) A naturally occurring horizontal gene transfer from a eukaryote to a prokaryote. J Mol Evol 31:383–388

    PubMed  CAS  Google Scholar 

  48. The International Aphid Genomics Consortium (2010) Genome Sequence of the Pea Aphid Acyrthosiphon pisum. PLoS Biol 8: e1000313

    Google Scholar 

  49. Moran NA, Jarvik T (2010) Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328:624–627.

    PubMed  CAS  Google Scholar 

  50. Levine MT, Jones CD, Kern AD et al (2006) Novel genes derived from noncoding DNA in Drosophila melanogaster are frequently X-linked and exhibit testis-biased expression. Proc Natl Acad Sci U S A 103:9935–9939

    PubMed  CAS  Google Scholar 

  51. Zhou Q, Zhang G, Zhang Y et al (2008) On the origin of new genes in Drosophila. Genome Res 18:1446–1455

    PubMed  CAS  Google Scholar 

  52. Zhang YE, Vibranovski MD, Krinsky BH et al (2010) Age-dependent chromosomal distribution of male-biased genes in Drosophila. Genome Res 20:1526–1533

    PubMed  CAS  Google Scholar 

  53. Cai J, Zhao R, Jiang H et al (2008) De novo origination of a new protein-coding gene in Saccharomyces cerevisiae. Genetics 179:487–496

    PubMed  CAS  Google Scholar 

  54. Knowles DG, McLysaght A (2009) Recent de novo origin of human protein-coding genes. Genome Res 19:1752–1759

    PubMed  CAS  Google Scholar 

  55. Toll-Riera M, Bosch N, Bellora N et al (2009) Origin of primate orphan genes: a comparative genomics approach. Mol Biol Evol 26:603–612

    PubMed  CAS  Google Scholar 

  56. Xiao W, Liu H, Li Y et al (2009) A rice gene of de novo origin negatively regulates pathogen-induced defense response. PLoS One 4:e4603

    PubMed  Google Scholar 

  57. Hertel J, Lindemeyer M, Missal K et al (2006) The expansion of the metazoan microRNA repertoire. BMC Genomics 7:25

    PubMed  Google Scholar 

  58. Assis R, Kondrashov AS (2009) Rapid repetitive element-mediated expansion of piRNA clusters in mammalian evolution. Proc Natl Acad Sci U S A 106:7079–7082

    PubMed  CAS  Google Scholar 

  59. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641

    PubMed  CAS  Google Scholar 

  60. Duret L, Chureau C, Samain S et al (2006) The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science 312:1653–1655

    PubMed  CAS  Google Scholar 

  61. Wang W, Brunet FG, Nevo E et al (2002) Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster. Proc Natl Acad Sci U S A 99:4448–4453

    PubMed  CAS  Google Scholar 

  62. Yang S, Arguello JR, Li X et al (2008) Repetitive element-mediated recombination as a mechanism for new gene origination in Drosophila. PLoS Genet 4:e3

    PubMed  Google Scholar 

  63. Smalheiser NR, Torvik VI (2005) Mammalian microRNAs derived from genomic repeats. Trends Genet 21:322–326

    PubMed  CAS  Google Scholar 

  64. Piriyapongsa J, Mariño-Ramírez L, Jordan IK (2007) Origin and evolution of human microRNAs from transposable elements. Genetics 176:1323–1337

    PubMed  CAS  Google Scholar 

  65. Brosius J (1999) RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. Gene 238:115–134

    PubMed  CAS  Google Scholar 

  66. Wagner A (2002) Selection and gene duplication: a view from the genome. Genome Biol 3:reviews1012

    Google Scholar 

  67. Kosiol C, Anisimova M (2012) Selection in protein coding regions. In: Anisimova M (ed) Evolutionary genomics: statistical and computational methods (volume 1). Methods in Molecular Biology, Springer Science+Business Media New York

    Google Scholar 

  68. Emerson JJ, Kaessmann H, Betrán E et al (2004) Extensive gene traffic on the mammalian X chromosome. Science 303:537–540

    PubMed  CAS  Google Scholar 

  69. Vinckenbosch N, Dupanloup I, Kaessmann H (2006) Evolutionary fate of retroposed gene copies in the human genome. Proc Natl Acad Sci U S A 103:3220–3225

    PubMed  CAS  Google Scholar 

  70. Arguello JR, Fan C, Wang W et al (2007) Origination of chimeric genes through DNA-level recombination. Genome Dyn 3:131–146

    PubMed  CAS  Google Scholar 

  71. Katju V, Lynch M (2003) The structure and early evolution of recently arisen gene duplicates in the Caenorhabditis elegans genome. Genetics 165:1793–1803

    PubMed  CAS  Google Scholar 

  72. Katju V, Lynch M (2006) On the formation of novel genes by duplication in the Caenorhabditis elegans genome. Mol Biol Evol 23:1056–1067

    PubMed  CAS  Google Scholar 

  73. Emerson JJ, Cardoso-Moreira M, Borevitz JO et al (2008) Natural selection shapes genome-wide patterns of copy-number polymorphism in Drosophila melanogaster. Science 320:1629–1631

    PubMed  CAS  Google Scholar 

  74. Conrad DF, Pinto D, Redon R et al (2010) Origins and functional impact of copy number variation in the human genome. Nature 464:704–712

    PubMed  CAS  Google Scholar 

  75. Zhou Q, Wang W (2008) On the origin and evolution of new genes--a genomic and experimental perspective. J Genet Genomics 35:639–648

    PubMed  CAS  Google Scholar 

  76. Arguello JR, Chen Y, Yang S et al (2006) Origination of an X-linked testes chimeric gene by illegitimate recombination in Drosophila. PLoS Genet 2:e77

    PubMed  Google Scholar 

  77. Betrán E, Thornton K, Long M (2002) Retroposed new genes out of the X in Drosophila. Genome Res 1854–1859

    Google Scholar 

  78. Begun DJ, Lindfors HA, Kern AD et al (2007) Evidence for de novo evolution of testis-expressed genes in the Drosophila yakuba/Drosophila erecta clade. Genetics 176:1131–1137

    PubMed  CAS  Google Scholar 

  79. Zhang Y, Vibranovski DV, Landback P et al (2010) Chromosomal Redistribution of Male-Biased Genes in Mammalian Evolution with Two Bursts of Gene Gain on the X Chromosome. PLoS Bio 8:e1000494

    Google Scholar 

  80. Ranz JM, Castillo-Davis CI, Meiklejohn CD et al (2003) Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science 300:1742–1745

    PubMed  CAS  Google Scholar 

  81. Parisi M, Nuttall R, Naiman D et al (2003) Paucity of genes on the Drosophila X chromosome showing male-biased expression. Science 299:697–700

    PubMed  CAS  Google Scholar 

  82. Vibranovski MD, Zhang Y, Long M (2009) General gene movement off the X chromosome in the Drosophila genus. Genome Res 19:897–903

    PubMed  CAS  Google Scholar 

  83. Vibranovski MD, Lopes HF, Karr TL et al (2009) Stage-specific expression profiling of Drosophila spermatogenesis suggests that meiotic sex chromosome inactivation drives genomic relocation of testis-expressed genes. PLoS Genet 5:e1000731

    PubMed  Google Scholar 

  84. Potrzebowski L, Vinckenbosch N, Marques AC et al (2008) Chromosomal gene movements reflect the recent origin and biology of therian sex chromosomes. PLoS Biol 6:e80

    PubMed  Google Scholar 

  85. Conrad B, Antonarakis SE (2007) Gene duplication: a drive for phenotypic diversity and cause of human disease. Annu Rev Genomics Hum Genet 8:17–35

    PubMed  CAS  Google Scholar 

  86. Otto SP, Yong P (2002) The evolution of gene duplicates. Adv Genet 46:451–483

    PubMed  CAS  Google Scholar 

  87. Kondrashov FA, Kondrashov AS (2005) Role of selection in fixation of gene duplications. J Theor Biol 239:141–151

    PubMed  Google Scholar 

  88. Harrison PM, Echols N, Gerstein MB (2001) Digging for dead genes: an analysis of the characteristics of the pseudogene population in the Caenorhabditis elegans genome. Nucleic Acids Res 29:818–830

    PubMed  CAS  Google Scholar 

  89. Harrison PM, Hegyi H, Balasubramanian S et al (2002) Molecular fossils in the human genome: identification and analysis of the pseudogenes in chromosomes 21 and 22. Genome Res 12:272–280

    PubMed  CAS  Google Scholar 

  90. Rouquier S, Blancher A, Giorgi D (2000) The olfactory receptor gene repertoire in primates and mouse: evidence for reduction of the functional fraction in primates. Proc Natl Acad Sci U S A 97:2870–2874

    PubMed  CAS  Google Scholar 

  91. Zhang J, Zhang YP, Rosenberg HF (2002) Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. Nat Genet 30:411–415

    PubMed  CAS  Google Scholar 

  92. Zhang J (2006) Parallel adaptive origins of digestive RNases in Asian and African leaf monkeys. Nat Genet 38:819–823

    PubMed  CAS  Google Scholar 

  93. Force A, Lynch M, Pickett FB et al (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    PubMed  CAS  Google Scholar 

  94. Hughes AL (1994) The evolution of functionally novel proteins after gene duplication. Proc Biol Sci 256:119–1124

    PubMed  CAS  Google Scholar 

  95. Piatigorsky J, Wistow G (1991) The recruitment of crystallins: new functions precede gene duplication. Science 252:1078–1079

    CAS  Google Scholar 

  96. Lynch M, Katju V (2004) The altered evolutionary trajectories of gene duplicates. Trends Genet 20:544–549

    PubMed  CAS  Google Scholar 

  97. Innan H, Kondrashov F (2010) The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 11:97–108

    PubMed  CAS  Google Scholar 

  98. Moore RC, Purugganan MD (2003) The early stages of duplicate gene evolution. Proc Natl Acad Sci USA 100:15682–15687

    PubMed  CAS  Google Scholar 

  99. Perry GH, Dominy NJ, Claw KG et al (2007) Diet and the evolution of human amylase gene copy number variation. Nat Genet 39:1256–1260

    PubMed  CAS  Google Scholar 

  100. Schrider DR, Hahn MW (2010) Gene copy-number polymorphism in nature. Proc Biol Sci 277:3213–3221

    PubMed  CAS  Google Scholar 

  101. Schmidt JM, Good RT, Appleton B et al (2010) Copy number variation and transposable elements feature in recent, ongoing adaptation at the Cyp6g1 locus. PLoS Genet 6:e1000998

    PubMed  Google Scholar 

  102. Hahn MW (2010) Distinguishing among evolutionary models for the maintenance of gene duplicates. J Hered 100:605–617

    Google Scholar 

  103. Zhen Y, Anfolfatto P (2012) Detecting selection on non-coding genomics regions. In: Anisimova M (ed) Evolutionary genomics: statistical and computational methods (volume 1). Methods in Molecular Biology, Springer Science+Business Media New York

    Google Scholar 

  104. Raes J, Van de Peer Y (2003) Gene duplication, the evolution of novel gene functions, and detecting functional divergence of duplicates in silico. Appl Bioinformatics 2:91–101

    PubMed  CAS  Google Scholar 

  105. Huminiecki L, Wolfe KH (2004) Divergence of spatial gene expression profiles following species-specific gene duplications in human and mouse. Genome Res 14:1870–1879

    PubMed  CAS  Google Scholar 

  106. Kondrashov FA, Rogozin IB, Wolf YI et al (2002) Selection in the evolution of gene duplications. Genome Biol 3:RESEARCH0008

    Google Scholar 

  107. Conant GC, Wagner A (2003) Asymmetric sequence divergence of duplicate genes. Genome Res 13:2052–2058

    PubMed  CAS  Google Scholar 

  108. Zhang P, Gu Z, Li WH (2003) Different evolutionary patterns between young duplicate genes in the human genome. Genome Biol 4:R56

    PubMed  Google Scholar 

  109. Cusack BP, Wolfe KH (2007) Not born equal: increased rate asymmetry in relocated and retrotransposed rodent gene duplicates. Mol Biol Evol 24:679–686

    PubMed  CAS  Google Scholar 

  110. Han MV, Demuth JP, McGrath CL et al (2009) Adaptive evolution of young gene duplicates in mammals. Genome Res 19:859–867

    PubMed  CAS  Google Scholar 

  111. Cai JJ, Petrov DA (2010) Relaxed purifying selection and possibly high rate of adaptation in primate lineage-specific genes. Genome Biol Evol 2:393–409

    PubMed  Google Scholar 

  112. Aris-Brosou S, Rodrigue N (2012) The essentials of computational molecular evolution. In: Anisimova M (ed) Evolutionary genomics: statistical and computational methods (volume 1). Methods in Molecular Biology, Springer Science+Business Media New York

    Google Scholar 

Download references

Acknowledgments

We thank J. Roman Arguello, Maria Vibranovski, three anonymous reviewers, and our editor, Maria Anisimova for comments and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarida Cardoso-Moreira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cardoso-Moreira, M., Long, M. (2012). The Origin and Evolution of New Genes. In: Anisimova, M. (eds) Evolutionary Genomics. Methods in Molecular Biology, vol 856. Humana Press. https://doi.org/10.1007/978-1-61779-585-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-585-5_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-584-8

  • Online ISBN: 978-1-61779-585-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics