Skip to main content

Genome-Wide Comparative Analysis of Phylogenetic Trees: The Prokaryotic Forest of Life

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 856))

Abstract

Genome-wide comparison of phylogenetic trees is becoming an increasingly common approach in evolutionary genomics, and a variety of approaches for such comparison have been developed. In this article, we present several methods for comparative analysis of large numbers of phylogenetic trees. To compare phylogenetic trees taking into account the bootstrap support for each internal branch, the Boot-Split Distance (BSD) method is introduced as an extension of the previously developed Split Distance method for tree comparison. The BSD method implements the straightforward idea that comparison of phylogenetic trees can be made more robust by treating tree splits differentially depending on the bootstrap support. Approaches are also introduced for detecting tree-like and net-like evolutionary trends in the phylogenetic Forest of Life (FOL), i.e., the entirety of the phylogenetic trees for conserved genes of prokaryotes. The principal method employed for this purpose includes mapping quartets of species onto trees to calculate the support of each quartet topology and so to quantify the tree and net contributions to the distances between species. We describe the application of these methods to analyze the FOL and the results obtained with these methods. These results support the concept of the Tree of Life (TOL) as a central evolutionary trend in the FOL as opposed to the traditional view of the TOL as a “species tree.”

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

CMDS:

Classical multidimensional scaling

COG:

Clusters of orthologous genes

BSD:

Boot-split distance

FOL:

Forest of life

HGT:

Horizontal gene transfer

ND:

Nodal distance

NUTs:

Nearly universal trees

QT:

Quartet topology

TNT:

Tree-net trend

TOL:

Tree of life

SD:

Split distance

References

  1. Huerta-Cepas, J., Dopazo, H., Dopazo, J., and Gabaldon, T. (2007) The human phylome. Genome Biol 8, R109.

    Article  PubMed  Google Scholar 

  2. Huerta-Cepas, J., Bueno, A., Dopazo, J., and Gabaldon, T. (2008) PhylomeDB: a database for genome-wide collections of gene phylogenies. Nucleic Acids Res 36, D491-496.

    Article  PubMed  CAS  Google Scholar 

  3. Frickey, T., and Lupas, A. N. (2004) PhyloGenie: automated phylome generation and analysis. Nucleic Acids Res 32, 5231–5238.

    Article  PubMed  CAS  Google Scholar 

  4. Sicheritz-Ponten, T., and Andersson, S. G. (2001) A phylogenomic approach to microbial evolution. Nucleic Acids Res 29, 545–552.

    Article  PubMed  CAS  Google Scholar 

  5. Puigbo, P., Wolf, Y. I., and Koonin, E. V. (2009) Search for a Tree of Life in the thicket of the phylogenetic forest. J Biol 8, 59.

    Google Scholar 

  6. Felsenstein, J. (2004) Inferring Phylogenies. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  7. Nei, M., and Kumar, S. (2001) Molecular Evolution and Phylogenetics. Oxford: Oxford Univ.

    Google Scholar 

  8. Castresana, J. (2007) Topological variation in single-gene phylogenetic trees. Genome Biol 8, 216.

    Article  PubMed  Google Scholar 

  9. Soria-Carrasco, V., and Castresana, J. (2008) Estimation of phylogenetic inconsistencies in the three domains of life. Mol Biol Evol 25, 2319–2329.

    Article  PubMed  CAS  Google Scholar 

  10. Marcet-Houben, M., and Gabaldon, T. (2009) The tree versus the forest: the fungal tree of life and the topological diversity within the yeast phylome. PLoS ONE 4, e4357.

    Article  PubMed  Google Scholar 

  11. Robinson, D. F., and Foulds, L. R. (1981) Comparison of phylogenetic trees. Math Biosci 53, 131–147.

    Article  Google Scholar 

  12. Puigbo, P., Garcia-Vallve, S., and McInerney, J. O. (2007) TOPD/FMTS: a new software to compare phylogenetic trees. Bioinformatics 23, 1556–1558.

    Article  PubMed  CAS  Google Scholar 

  13. Steel, M. A., and Penny, D. (1993) Distribution of tree comparison metrics - some new results. Systematic Biol 42, 126–141.

    Google Scholar 

  14. Bluis, J., and Shin, D.-G. (2003) Nodal distance algorithm: calculating a phylogenetic tree comparison metric. In: Proceedings of the third IEEE symposium on bioInformatics and bioEngineering. IEEE Computer Society, 87–94.

    Google Scholar 

  15. Cardona, G., Llabres, M., Rossello, F., and Valiente, G. (2009) Nodal distances for rooted phylogenetic trees. J Math Biol.

    Google Scholar 

  16. Estabrook, G. F., McMorris, F. R., and Meachan, A. (1985) Comparison of undirected phylogenetic trees based on subtree of four evolutionary units. Syst Zool 34, 193–200.

    Google Scholar 

  17. Allen, L., and Steel, M. (2001) Subtree Transfer Operations and Their Induced Metrics on Evolutionary Trees Annals of Combinatorics 5, 1–15.

    Google Scholar 

  18. Waterman, M. S., and Steel, M. (1978) On the similarity of dendrograms. J Theor Biol 73, 789–800.

    Article  PubMed  CAS  Google Scholar 

  19. Beiko, R. G., and Hamilton, N. (2006) Phylogenetic identification of lateral genetic transfer events. BMC Evol Biol 6, 15.

    Article  PubMed  Google Scholar 

  20. Hickey, G., Dehne, F., Rau-Chaplin, A., and Blouin, C. (2008) SPR Distance Computation for Unrooted Trees. Evol Bioinform Online 4, 17–27.

    PubMed  CAS  Google Scholar 

  21. Kubicka, E., Kubicki, G., and McMorris, F. R. (1995) An algorithm to find agreement subtrees. J Classification 12, 91–99.

    Article  Google Scholar 

  22. Nye, T. M., Lio, P., and Gilks, W. R. (2006) A novel algorithm and web-based tool for comparing two alternative phylogenetic trees. Bioinformatics 22, 117–119.

    Article  PubMed  CAS  Google Scholar 

  23. de Vienne, D. M., Giraud, T., and Martin, O. C. (2007) A congruence index for testing topological similarity between trees. Bioinformatics 23, 3119–3124.

    Article  PubMed  Google Scholar 

  24. Cotton, J. A., and Page, R. D. (2002) Going nuclear: gene family evolution and vertebrate phylogeny reconciled. Proc Biol Sci 269, 1555–1561.

    Article  PubMed  CAS  Google Scholar 

  25. Soria-Carrasco, V., Talavera, G., Igea, J., and Castresana, J. (2007) The K tree score: quantification of differences in the relative branch length and topology of phylogenetic trees. Bioinformatics 23, 2954–2956.

    Article  PubMed  CAS  Google Scholar 

  26. Marcet-Houben, M., and Gabaldon, T. (2011) TreeKO: a duplication-aware algorithm for the comparison of phylogenetic trees. Nucleic Acids Res 39, e66.

    Article  PubMed  CAS  Google Scholar 

  27. Koonin, E. V., Wolf, Y. I., and Puigbo, P. (2009) The phylogenetic forest and the quest for the elusive tree of life. Cold Spring Harb Symp Quant Biol 74, 205–213.

    Google Scholar 

  28. Zuckerkandl, E., and Pauling, L. (1962) Molecular evolution. In: Horizons in Biochemistry. Edited by Kasha M, B. P. New York: Academic Press; 189–225.

    Google Scholar 

  29. Woese, C. R. (1987) Bacterial evolution. Microbiol Rev 51, 221–271.

    PubMed  CAS  Google Scholar 

  30. Bapteste, E., O'Malley, M. A., Beiko, R. G., Ereshefsky, M., Gogarten, J. P., Franklin-Hall, L., et al. (2009) Prokaryotic evolution and the tree of life are two different things. Biol Direct 4, 34.

    Article  PubMed  Google Scholar 

  31. Doolittle, W. F. (2000) Uprooting the tree of life. Sci Am 282, 90–95.

    Article  PubMed  CAS  Google Scholar 

  32. Doolittle, W. F., and Bapteste, E. (2007) Pattern pluralism and the Tree of Life hypothesis. Proc Natl Acad Sci U S A 104, 2043–2049.

    Article  PubMed  CAS  Google Scholar 

  33. Kurland, C. G., Canback, B., and Berg, O. G. (2003) Horizontal gene transfer: A critical view. Proc Natl Acad Sci U S A 100, 9658–9662.

    Article  PubMed  CAS  Google Scholar 

  34. Kurland, C. G. (2005) What tangled web: barriers to rampant horizontal gene transfer. Bioessays 27, 741–747.

    Article  PubMed  CAS  Google Scholar 

  35. Logsdon, J. M., and Faguy, D. M. (1999) Thermotoga heats up lateral gene transfer. Curr Biol 9, R747-751.

    Article  PubMed  CAS  Google Scholar 

  36. Genereux, D. P., and Logsdon, J. M., Jr. (2003) Much ado about bacteria-to-vertebrate lateral gene transfer. Trends Genet 19, 191–195.

    Article  PubMed  CAS  Google Scholar 

  37. Kunin, V., Goldovsky, L., Darzentas, N., and Ouzounis, C. A. (2005) The net of life: reconstructing the microbial phylogenetic network. Genome Res 15, 954–959.

    Article  PubMed  CAS  Google Scholar 

  38. Daubin, V., Moran, N. A., and Ochman, H. (2003) Phylogenetics and the cohesion of bacterial genomes. Science 301, 829–832.

    Article  PubMed  CAS  Google Scholar 

  39. Lerat, E., Daubin, V., and Moran, N. A. (2003) From Gene Trees to Organismal Phylogeny in Prokaryotes:The Case of the gamma-Proteobacteria. PLoS Biol 1, E19.

    Article  PubMed  Google Scholar 

  40. Woese, C. R., Olsen, G. J., Ibba, M., and Soll, D. (2000) Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol Rev 64, 202–236.

    Article  PubMed  CAS  Google Scholar 

  41. Fitz-Gibbon, S. T., and House, C. H. (1999) Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res 27, 4218–4222.

    Article  PubMed  CAS  Google Scholar 

  42. Hanage, W. P., Fraser, C., and Spratt, B. G. (2006) Sequences, sequence clusters and bacterial species. Philos Trans R Soc Lond B Biol Sci 361, 1917–1927.

    Article  PubMed  Google Scholar 

  43. Eisen, J. A., and Fraser, C. M. (2003) Phylogenomics: intersection of evolution and genomics. Science 300, 1706–1707.

    Article  PubMed  CAS  Google Scholar 

  44. Salzberg, S. L., White, O., Peterson, J., and Eisen, J. A. (2001) Microbial genes in the human genome: lateral transfer or gene loss? Science 292, 1903–1906.

    Article  PubMed  CAS  Google Scholar 

  45. Galtier, N. (2007) A model of horizontal gene transfer and the bacterial phylogeny problem. Syst Biol 56, 633–642.

    Article  PubMed  Google Scholar 

  46. Galtier, N., and Daubin, V. (2008) Dealing with incongruence in phylogenomic analyses. Philos Trans R Soc Lond B Biol Sci 363, 4023–4029.

    Article  PubMed  Google Scholar 

  47. Ciccarelli, F. D., Doerks, T., von Mering, C., Creevey, C. J., Snel, B., and Bork, P. (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287.

    Article  PubMed  CAS  Google Scholar 

  48. Choi, I. G., and Kim, S. H. (2007) Global extent of horizontal gene transfer. Proc Natl Acad Sci U S A 104, 4489–4494.

    Article  PubMed  CAS  Google Scholar 

  49. Koonin, E. V., Wolf, Y. I., and Puigbo, P. (2009) The Phylogenetic Forest and the Quest for the Elusive Tree of Life. Cold Spring Harb Symp Quant Biol.

    Google Scholar 

  50. Dagan, T., and Martin, W. (2009) Getting a better picture of microbial evolution en route to a network of genomes. Philos Trans R Soc Lond B Biol Sci 364, 2187–2196.

    Article  PubMed  CAS  Google Scholar 

  51. Boucher, Y., Douady, C. J., Papke, R. T., Walsh, D. A., Boudreau, M. E., Nesbo, C. L., et al. (2003) Lateral gene transfer and the origins of prokaryotic groups. Annu Rev Genet 37, 283–328.

    Article  PubMed  CAS  Google Scholar 

  52. Bucknam, J., Boucher, Y., and Bapteste, E. (2006) Refuting phylogenetic relationships. Biol Direct 1, 26.

    Article  PubMed  Google Scholar 

  53. Schliep, K., Lopez, P., Lapointe, F. J., and Bapteste, E. (2011) Harvesting evolutionary signals in a forest of prokaryotic gene trees. Mol Biol Evol 28, 1393–1405.

    Article  PubMed  CAS  Google Scholar 

  54. Beiko, R. G., Doolittle, W. F., and Charlebois, R. L. (2008) The impact of reticulate evolution on genome phylogeny. Syst Biol 57, 844–856.

    Article  PubMed  Google Scholar 

  55. Doolittle, W. F., and Zhaxybayeva, O. (2009) On the origin of prokaryotic species. Genome Res 19, 744–756.

    Article  PubMed  CAS  Google Scholar 

  56. Gogarten, J. P., and Townsend, J. P. (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3, 679–687.

    Article  PubMed  CAS  Google Scholar 

  57. Gogarten, J. P., Doolittle, W. F., and Lawrence, J. G. (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19, 2226–2238.

    Article  PubMed  CAS  Google Scholar 

  58. Puigbo, P., Wolf, Y. I., and Koonin, E. V. (2010) The tree and net components of prokaryote evolution. Genome Biol Evol 2, 745–756.

    Article  PubMed  Google Scholar 

  59. Tatusov, R. L., Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Kiryutin, B., Koonin, E. V., et al. (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41.

    Article  PubMed  Google Scholar 

  60. Jensen, L. J., Julien, P., Kuhn, M., von Mering, C., Muller, J., Doerks, T., et al. (2008) eggNOG: automated construction and annotation of orthologous groups of genes. Nucleic Acids Res 36, D250-254.

    Article  PubMed  CAS  Google Scholar 

  61. Edgar, R. C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–1797.

    Article  PubMed  CAS  Google Scholar 

  62. Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17, 540–552.

    PubMed  CAS  Google Scholar 

  63. Keane, T. M., Naughton, T. J., and McInerney, J. O. (2007) MultiPhyl: a high-throughput phylogenomics webserver using distributed computing. Nucleic Acids Res 35, W33-37.

    Article  PubMed  Google Scholar 

  64. Creevey, C. J., and McInerney, J. O. (2005) Clann: investigating phylogenetic information through supertree analyses. Bioinformatics 21, 390–392.

    Article  PubMed  CAS  Google Scholar 

  65. Felsenstein, J. (1996) Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol 266, 418–427.

    Article  PubMed  CAS  Google Scholar 

  66. Torgerson, W. S. (1958) Theory and Methods of Scaling. New York: Wiley.

    Google Scholar 

  67. Gower, J. C. (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53, 325–328.

    Google Scholar 

  68. Tibshirani, R., Walther, G., and Hastie, T. (2001) Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63, 411–423.

    Article  Google Scholar 

  69. Hillis, D. M., Heath, T. A., and St John, K. (2005) Analysis and visualization of tree space. Syst Biol 54, 471–482.

    Article  PubMed  Google Scholar 

  70. Pavlidis, P., and Noble, W. S. (2003) Matrix2png: a utility for visualizing matrix data. Bioinformatics 19, 295–296.

    Article  PubMed  CAS  Google Scholar 

  71. Koonin, E. V., and Wolf, Y. I. (2008) Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 36, 6688–6719.

    Article  PubMed  CAS  Google Scholar 

  72. Ge, F., Wang, L. S., and Kim, J. (2005) The cobweb of life revealed by genome-scale estimates of horizontal gene transfer. PLoS Biol 3, e316.

    Article  PubMed  Google Scholar 

  73. Brochier, C., Bapteste, E., Moreira, D., and Philippe, H. (2002) Eubacterial phylogeny based on translational apparatus proteins. Trends Genet 18, 1–5.

    Article  PubMed  CAS  Google Scholar 

  74. Wolf, Y. I., Rogozin, I. B., Grishin, N. V., and Koonin, E. V. (2002) Genome trees and the tree of life. Trends Genet 18, 472–479.

    Article  PubMed  CAS  Google Scholar 

  75. Wolf, Y. I., Rogozin, I. B., Grishin, N. V., Tatusov, R. L., and Koonin, E. V. (2001) Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evolutionary Biology 1.

    Google Scholar 

  76. Creevey, C. J., Fitzpatrick, D. A., Philip, G. K., Kinsella, R. J., O’Connell, M. J., Pentony, M. M., et al. (2004) Does a tree-like phylogeny only exist at the tips in the prokaryotes? Proc Biol Sci 271, 2551–2558.

    Article  PubMed  CAS  Google Scholar 

  77. Brochier-Armanet, C., Boussau, B., Gribaldo, S., and Forterre, P. (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6, 245–252.

    Article  PubMed  CAS  Google Scholar 

  78. Elkins, J. G., Podar, M., Graham, D. E., Makarova, K. S., Wolf, Y., Randau, L., et al. (2008) A korarchaeal genome reveals new insights into the evolution of the Archaea. Proc Natl Acad Sci USA in press.

    Google Scholar 

  79. Wolf, Y. I., Aravind, L., Grishin, N. V., and Koonin, E. V. (1999) Evolution of aminoacyl-tRNA synthetases--analysis of unique domain architectures and phylogenetic trees reveals a complex history of horizontal gene transfer events. Genome Res 9, 689–710.

    PubMed  CAS  Google Scholar 

  80. Koonin, E. V. (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor. Nature Rev Microbiol 1, 127–136.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors’ research is supported by the Department of Health and Human Services intramural program (NIH, National Library of Medicine).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene V. Koonin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Puigbò, P., Wolf, Y.I., Koonin, E.V. (2012). Genome-Wide Comparative Analysis of Phylogenetic Trees: The Prokaryotic Forest of Life. In: Anisimova, M. (eds) Evolutionary Genomics. Methods in Molecular Biology, vol 856. Humana Press. https://doi.org/10.1007/978-1-61779-585-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-585-5_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-584-8

  • Online ISBN: 978-1-61779-585-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics